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Overview
In this Supplementary Material, we present the following

additional material:

(i) Additional qualitative examples of dense video cap-
tioning predictions (Section A).

(ii) Additional information about our experimental setup
(Section B);

(iii) Additional experimental results (Section C), including
an ablation on the importance of pretraining for few-
shot dense video captioning (Section C.1) and addi-
tional ablation studies in the standard fully-supervised
dense video captioning setting (Section C.2).

A. Qualitative examples of dense video cap-
tioning predictions

In Figure 4 of the main paper, we show qualitative re-
sults of dense event captioning by our Vid2Seq model. Here
in Figures 1 and 2 , we show additional results on exam-
ples from the YouCook2 and ActivityNet Captions datasets.
These results show that Vid2Seq can predict meaningful
dense captions and event boundaries in diverse scenarios,
with or without transcribed speech input, e.g. series of in-
structions in cooking recipes (Figure 1) or actions in human
sports or leisure activities (first three examples in Figure 2).
The last example in Figure 2 illustrates a failure case where
the model hallucinates events that are not visually grounded
such as ‘one man hats off to the camera‘.

B. Experimental setup
In this section, we complement the information provided

in Section 4.1 of the main paper about the datasets we use
(Section B.1). We also give additional implementation de-
tails (Section B.2).

*This work was done when the first author was an intern at Google.

B.1. Datasets

YT-Temporal-1B [16] consists of 18.821M unlabeled nar-
rated videos covering about 150 years of video content for
pretraining. Compared with HowTo100M [8], this dataset
was created to cover a wider range of domains and not only
instructional videos.

HowTo100M [8] consists of 1.221M unlabeled narrated in-
structional videos covering about 15 years of video content
for pretraining.

YouCook2 [18] has 1,790 untrimmed videos of cooking
procedures. On average, each video lasts 320s and is an-
notated with 7.7 temporally-localized imperative sentences.
The dataset is split into 1,333 videos for training and 457
videos for validation.

ViTT [3] consists of 7,672 untrimmed instructional videos
from the YouTube-8M dataset [1]. Compared to YouCook2,
ViTT was created to better reflect the distribution of instruc-
tional videos in the wild. On average, each video lasts 250s
and is annotated with 7.1 temporally-localized short tags.
The dataset is split into 5,476, 1,102 and 1,094 videos for
training, validation and testing, respectively. Videos in the
validation and test sets are provided with multiple sets of
dense event captioning annotations. Following [3], we treat
each set of annotations as a single example during evalua-
tion and discard videos with more than 3 sets of annotations.

ActivityNet-Captions [5] contains 14,934 untrimmed
videos of various human activities. Different from
YouCook2 and ViTT where most videos contain transcribed
speech content, we find that 68% of videos in Activi-
tyNet Captions do not have transcribed narration. On av-
erage, each video lasts 120s and is annotated with 3.7
temporally-localized sentences. The dataset is split into
10,009 and 4,925 videos for training and validation, respec-
tively. Videos in the validation set are provided with two
sets of dense video captioning annotations. Following prior
work [14], we use both sets of annotations for evaluation,
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Vis2Seq

GT Cut the chicken. Pound the 
chicken.

Whisk the eggs.

Trim off the 
excess fat of 
chicken breast and 
cut it into halves.

Cover the chicken in 
plastic wrap and 
pound it out.

Crack two large 
eggs into a bowl 
and whisk them
together.

Mix bread
crumbs
and 
parmesan 
cheese
together.

Add bread crumbs
grated parmesan 
cheese and italian
bread crumbs to a 
bowl.

Coat the 
chicken in the 
flour mixture 
the egg
mixture and 
then the bread
crumbs.

Coat the chicken in 
the flour mixture 
and then the bread
crumbs.

Add
oil to 
a pan.

Fry the 
chicken
in the 
pan.

Add marinara 
sauce and 
cheese on top 
of the chicken.

Fry the 
chicken in a 
pan with
oil.

Pour tomato sauce 
and mozzarella 
cheese on top of the 
chicken.

Bake the 
chicken in 
an oven.

Bake the chicken in an 
oven.

I'm going
to start 
off with
two
boneless
skinless
chicken
breasts
here.

I'm just
going to 
trim off 
the grisly
parts and 
the 
excess
fat 
maybe
some of 
the skin 
that's left
over on 
there.

I've got a piece
of wax paper
here and I put 
that onto my
cutting board
[…] and I'm
going to pound 
out my breast
halves until
they are about 
1/2 an inch
thicker.

… …

The 
first 
thing
I'm
going
to 
need is
an egg
wash.

So I'm
going to 
take two
large eggs
and crack 
those into
a bowl 
and if you
get any
shells in 
there, be
sure to get
those […]

…

Now, I'm
using my
homema
de Italian
bread
crumbs
here.

…

I'm just
going to 
mix this
together
and now
we can 
start 
breading
our
chicken.

Now, 
the 
breading
process 
is really
simple 
on this
you just
want to 
take one 
of your
[…] 

…

I've got my small
cast-iron skillet on 
medium-high heat
here and I'm going to 
put in about a quarter 
of an inch or so of 
extra virgin olive oil
into the bottom of 
that and I'm going to 
let that come up to 
temperature and then
I'm going to start 
frying up my chicken
pieces.

…

We're
going to 
be baking
these and 
that will
finish 
cooking 
them.

…

And if you'd
like to 
follow me 
on Google 
Plus 
Facebook 
and/or 
Pinterest all 
my links 
will be in 
the 
description 
box.
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GT Finely chop a 
cabbage to small
pieces.

Add 20g salt
caraway seeds
juniper berries
and dill.

Massage the cabbage
with the seasoning.

Take a large cabbage
into a bowl and chop 
it into small pieces.

Add some salt to 
the cabbage and 
mix.

Add caraway seeds juniper
berries and dill tips to the 
cabbage and mix.

Put the mixture in a 
jar and press firm to 
the bottom.

Place the 
mixture 
into a 
glass jar.

Seal the jar 
and put in 
dark place 
for 4 weeks.

Seal the 
jar.

And 
today
what I 
want to 
do is
share one 
of my
favorite 
recipes
and in 
my
opinion
[…]

So then
we're
going
to chop 
the 
cabbag
e you
can use 
a 
mandol
in to do 
this.

… …

So the 
rule of 
thumb
with salt
is that you
want
about 2.5 
to 3 
percent of 
the weight
of the 
cabbage.

…

So now
we're going
to get in 
really mix 
that salt into
the cabbage
which is
going to take
about ten
minutes so
really work
it it's a good 
workout.

…

And after
that it can be
popped into
the fridge or 
popped into
another jar 
and enjoyed, 
you know, as 
a condiment 
once a day
[…]

There 
we go.

So in 
this
case, 
we've
got
about 
20 
grams.

…

So it's gonna
be really well
covered and 
obviously it's
important to 
wash your
hands before
you do this
that seems
like a pretty
obvious thing
to do but […]

So no 
oxygen
that's
that's
the 
idea.…

If you do have 
fresh dill, I 
would
recommend
using that now
for the fun 
part, what you
want to do is
we really need
to release all 
of the juices
from this
cabbage

…

Mix 
flour
salt and 
pepper
together
.

Place 
the 
chicken
in a 
baking
dish.

Figure 1. Examples of dense event captioning predictions of Vid2Seq on the validation set of YouCook2, compared with ground-truth.

by computing the average of the scores over each set for
SODA c and by using the standard evaluation tool [5] for
all other dense event captioning metrics. For video para-
graph captioning, we follow [14] and report results on the
’val-ae’ split that includes 2,460 videos [6, 17].

MSR-VTT [15] consists of 10,000 open domain video
clips. The duration of each video clip is between 10 and
30 seconds. 20 natural language descriptions are manually
annotated for each clip. The dataset is split into 6,513, 497
and 2,990 videos for training, validation and testing, respec-

tively.
MSVD [2] consists of 1,970 open domain video clips. The
duration of each video clip is between 10 and 30 seconds.
Each video clip has roughly 40 manually annotated cap-
tions. The dataset is split into 1,200, 100 and 670 videos
for training, validation and testing, respectively.

B.2. Implementation details

Architecture. The visual temporal transformer encoder
f t, the text encoder gt and the text decoder ht all have
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A weightlifter is
standing on a 
stage.

He lifts the barbell before dropping it. He jumps up and down in excitement.

A very strong
man is shown in a 
competition

He lifts a very heavy weight over his head. He then drops the weight to the ground before shaking
his hands.
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GT
A group of children are seen
swimming in a pool. The kids hit a ball back and forth in the water.

A picture of a sky is shown and leads into a 
group of boys playing a game of water polo.

The camera pans around a small group of kids playing and then a man 
chases a ball around.

The boys continue playing and one man hats off to the 
camera.
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GT A man walks up 
to parallel bars 
while spectators, 
competitors, and 
officials are in the 
background.

The man performs a routine on the parallel bars. The man finishes his routine and dismounts.

A man walks up to a 
set of uneven bars.

He mounts the bars, then spins himself around. He does a handstand, then dismounts.

Input
Frames

They fight over the ball, trying to get it into the goal.

Ø Ø Ø Ø Ø Ø Ø Ø
Input 

Speech

Vis2Seq

GT A man is seen looking at the camera and leads into
him playing a poker game with others.

One man deals cards and chips while
speaking to one another.

They continue playing and speaking to one another.

A man is sitting behind a table playing
poker.

He deals cards to the people, then he puts them on the table. The man puts the 
cards on the table, 
and puts the chips 
in the middle.

Input
Frames

Figure 2. Examples of dense event captioning predictions by Vid2Seq on the validation set of ActivityNet Captions, compared with ground-
truth. The first three examples show successful predictions, while the last example illustrates a failure case where the model hallucinates
events that are not visually grounded (‘one man hats off to the camera‘). Note that in all of these videos, there is no transcribed speech.

12 layers, 12 heads, embedding dimension 768, and MLP
hidden dimension of 2048. The text encoder and decoder
sequences are truncated or padded to L = S = 1000 to-
kens during pretraining, and S = 1000 and L = 256 tokens
during finetuning. At inference, we use beam search decod-
ing where we track the top 4 sequences and apply a length

normalization of 0.6.

Training. We use the Adam optimizer [4] with β =
(0.9, 0.999) and no weight decay. During pretraining, we
use a learning rate of 1e−4, warming it up linearly (from
0) for the first 1000 iterations, and keeping it constant for



Data Pretrain YouCook2 ViTT ActivityNet
S C M S C M S C M

1. 1% ✗ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
2. 1% ✓ 2.4 10.1 3.3 2.0 7.4 1.9 2.2 6.2 3.2
3. 10% ✗ 0.1 0.0 0.2 3.3 0.4 3.3 3.4 11.9 4.6
4. 10% ✓ 3.8 18.4 5.2 10.7 28.6 6.0 4.3 20.0 6.1
5. 50% ✗ 1.8 8.5 2.4 6.5 18.7 3.9 4.6 13.1 6.3
6. 50% ✓ 6.2 32.1 7.6 12.5 38.8 7.8 5.4 27.5 7.8
7. 100% ✗ 4.0 18.0 4.6 7.9 21.2 6.2 5.4 18.8 7.1
8. 100% ✓ 7.9 47.1 9.3 13.5 43.5 8.5 5.8 30.1 8.5

Table 1. Impact of our pretraining on few-shot dense event
captioning, by finetuning Vid2Seq using a small fraction of the
downstream training dataset.

the remaining iterations. During finetuning, we use a learn-
ing rate of 3e−4, warming it up linearly (from 0) for the
first 10% of iterations, followed by a cosine decay (down
to 0) for the remaining 90%. During finetuning, we use a
batch size of 32 videos split on 16 TPU v4 chips. We fine-
tune for 40 epochs on YouCook2, 20 epochs on ActivityNet
Captions and ViTT, 5 epochs on MSR-VTT and 10 epochs
on MSVD. We clip the maximum norm of the gradient to
0.1 during pretraining, and 1 during finetuning. For data
augmentation, we use random temporal cropping. For reg-
ularization, we use label smoothing [13] with value 0.1 and
dropout [11] with probability 0.1.

C. Experiments

In this section, we provide additional experiments that
complement the results presented in Section 4 of the main
paper. We first show the importance of pretraining in our
proposed few-shot setting in Section C.1. Then we provide
additional ablation studies in the standard fully-supervised
setting in Section C.2, where we ablate various factors in-
cluding pretraining on long narrated videos, the pretraining
dataset and the size of the visual backbone, the time tok-
enization process and the number of time tokens, the se-
quence construction process, the temporal positional em-
beddings and the initialization of the language model.

C.1. Importance of pretraining in few-shot settings

In Section 4.2 of the main paper, we show the benefits of
our pretraining method in the fully-supervised setting, i.e.
when using 100% of the downstream training dataset. In
Table 1, we further show that our pretraining method has
a considerable importance in the few-shot setting defined
in Section 4.4 of the main paper, i.e. when using a smaller
fraction of the downstream training dataset. In particular,
our pretraining method enables our Vid2Seq model to have
a non zero performance when using only 1% of the down-
stream training dataset (rows 1 and 2).

Max number
of narrations

YouCook2 ActivityNet
S C F1 S C F1

1. No pretraining 4.0 18.0 18.1 5.4 18.8 49.2
2. 1 6.0 32.1 22.1 5.1 22.9 48.1
3. 10 6.5 34.6 23.6 5.4 27.1 50.3
4. ∞ 7.9 47.1 27.3 5.8 30.1 52.4

Table 2. Ablation showing the importance of pretraining on
long narrated videos, by varying the maximum number of narra-
tion sentences that a randomly cropped video can cover. ∞ means
the cropping is unrestricted and can sample arbitrarily long videos.

Pretraining Data Model YouCook2 ActivityNet
S C F1 S C F1

1. ImageNet ViT-B/16 6.6 40.2 24.3 4.5 17.2 49.3
2. CLIP ViT-B/16 7.7 46.3 26.5 5.6 28.4 51.7
3. CLIP ViT-L/14 7.9 47.1 27.3 5.8 30.1 52.4

Table 3. Ablation on the pretraining data and model size of the
visual backbone fs.

C.2. Additional ablation studies

We here complement ablation studies reported in Sec-
tion 4.2 of the main paper, using the same default settings,
evaluation metrics and downstream datasets.

Pretraining on long narrated videos. In Table 1 of
the main paper, we show the benefits of pretraining on
untrimmed videos in comparison with the standard prac-
tice of pretraining on short, trimmed, video-speech seg-
ments [3, 7, 10]. In Table 2, we further evaluate the impor-
tance of sampling long narrated videos during pretraining.
By default, at each training iteration, we randomly tempo-
rally crop each narrated video without constraints, result-
ing in a video that can span over hundreds of transcribed
speech sentences. We here evaluate a baseline that con-
strains this cropping process such that the cropped video
only spans over a given maximum number of narration sen-
tences. Even with a maximum of 10 narration sentences,
this baseline significantly underperforms our model trained
in default settings where we sample longer untrimmed nar-
rated videos (rows 1, 2 and 3). This demonstrates that our
model benefits from pretraining on long narrated videos.

Visual features. In Table 4 of the main paper, we show
the benefits of scaling up the size of the pretraining dataset
of narrated videos and the size of the language model. In
Table 3, we further analyze the importance of the pretrain-
ing dataset and size of the visual backbone fs. We find
that CLIP pretraining [9] considerably improves over Ima-
geNet pretraining [12] with the same ViT-B/16 visual back-
bone model (row 2 vs 1). Furthermore, scaling up the visual
backbone size from ViT-B/16 to ViT-L/14 brings additional
improvements (row 3 vs 2).



Tokenization N
YouCook2 ActivityNet

S C F1 S C F1

1. Absolute 20 0.3 0.2 0.9 3.2 23.0 23.1
2. Absolute 100 3.5 25.7 12.0 4.8 25.5 41.5
3. Absolute 500 7.9 39.8 24.3 5.4 28.1 48.6
4. Relative 20 7.2 39.6 23.7 5.6 29.0 49.4
5. Relative 100 7.9 47.1 27.3 5.8 30.1 52.4
6. Relative 500 7.2 40.0 25.0 5.7 28.6 52.5

Table 4. Ablation on time tokenization (relative or absolute)
and the number of time tokens N .

Dot symbol
between segments

Time tokens
Position

YouCook2 ActivityNet
S C F1 S C F1

1. ✗ After text 7.9 48.3 26.7 5.6 29.8 51.1
2. ✓ After text 8.3 50.9 26.2 5.7 30.4 51.8
3. ✗ Before text 8.0 50.0 27.3 5.6 28.2 50.7
4. ✓ Before text 7.9 47.1 27.3 5.8 30.1 52.4

Table 5. Ablation on the sequence construction process.

Time tokenization and number of time tokens. In Ta-
ble 4, we further ablate the time tokenization process pre-
sented in Section 3.1 of the main paper. Our default time
tokens represent relative timestamps in a video, as we quan-
tize a video of duration T into N equally-spaced times-
tamps. Another possibility is to use time tokens that rep-
resent absolute timestamps in the video, i.e. the k-th token
represents the k-th second in the video. For both these vari-
ants, we vary the number of time tokens N . For the rela-
tive time tokens, increasing N makes the quantization more
fine-grained but also spreads the data into more time tokens.
On the other hand, for the absolute time tokens, increas-
ing N increases the video duration that the time tokens can
cover. We find that the best dense video captioning results
are obtained with the relative time tokens and N = 100
time tokens (row 5).

Sequence construction. In Table 5, we further ablate the
sequence construction process presented in Section 3.1 of
the main paper. Our default sequence inserts the start and
end time tokens of each segment before its corresponding
text sentence. Another possibility is to insert time tokens af-
ter each corresponding text sentence. We find that both vari-
ants achieve similar results (rows 2 and 4), with the default
sequence (row 4) resulting in slightly higher event localiza-
tion performance (F1 Score) but slightly lower dense cap-
tioning results overall. Furthermore, we observe that the dot
symbols indicating the separation between different events
have low importance (rows 1 and 2, rows 3 and 4).

Temporal positional embeddings. In Table 1 of the main
paper, we show that time tokens in the speech sequence pro-
vide temporal information about the speech transcript to our

Temporal
embeddings

YouCook2 ActivityNet
S C F1 S C F1

1. ✗ 6.8 42.0 24.9 5.3 27.0 50.6
2. ✓ 7.9 47.1 27.3 5.8 30.1 52.4

Table 6. Ablation on the temporal positional embeddings.

Language Model
Initialization

Video-text
Pretraining

YouCook2 ActivityNet
S C F1 S C F1

1. ✗ ✗ 0.9 4.2 7.6 4.3 23.7 41.2
2. ✓ ✗ 4.0 18.0 18.1 5.4 18.8 49.2
3. ✗ ✓ 8.8 51.3 28.4 5.7 28.7 51.2
4. ✓ ✓ 7.9 47.1 27.3 5.8 30.1 52.4

Table 7. Ablation on language model initialization and pre-
training.

model. In Table 6, we also evaluate the importance of the
temporal positional embeddings which communicate tem-
poral information from the visual stream to our model. We
find that these temporal embeddings are beneficial (row 2
vs 1).

Language model initialization and pretraining. In Ta-
ble 4 of the main paper, we show the benefits of using T5-
Base instead of T5-Small. In Table 7, we further investi-
gate the importance of initializing the language model from
weights pretrained on Web text. Without pretraining on nar-
rated videos, we find that text-only initialization is helpful
(rows 1 and 2). Interestingly, after pretraining on narrated
videos, we find that text-only initialization has little impor-
tance (rows 3 and 4), as it slightly improves the perfor-
mance on ActivityNet Captions while resulting in a slight
drop of performance on YouCook2. We believe that this
may be because of the domain gap between Web text and
the imperative-style dense captions in YouCook2, which are
more similar to transcribed speech in YT-Temporal-1B.
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