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1. Analysis of the video sequence length T

We show in Tab. 1 the variation of AUC on the Ped2

dataset for different values of T . We can infer that as T
decrease, the difference between video frames decreases,

which reduces the difficulty of network modeling and in-

creases the probability of an anomalous event being re-

stored. The increase in the false negative rate reduces the

overall performance. Conversely, as T increases, the differ-

ence between video frames increases, which increases the

difficulty of network modeling and decreases the probabil-

ity of normal events being restored. The increase in the false

positive rate also reduces the overall performance. When T

is set to the middle value of 9, the best performance is ob-

tained by USTN-DSC.

T 5 7 9 11 13

AUC 96.4 97.2 98.1 94.5 94.3

Table 1. The AUC(%) obtained by USTN-DSC for different values

of T on the Ped2 dataset.

2. Feature Extraction Module

Tab. 2 shows the detailed architecture of the feature ex-

traction module. Feature extraction module serves two main

purposes. First, it takes advantage of the excellent local

modeling ability of the convolutional neural network to cap-

ture the underlying local features, such as color, texture,

edge, etc., which is beneficial to the restoration of detailed

information of video frames in the decoding stage. Second,

the feature extraction module can reduce the spatial resolu-

tion, thus effectively decreasing the computational effort of

the network and accelerating the inference speed.

†Corresponding authors.

3. Output Head

The detailed architecture of the output head is shown in

Tab. 3. The main role of the output head is to upsample

the low resolution features map output from the decoder to

the target resolution. To better enhance the quality of the

restored video frames, following work [1], we use the Pix-

elShuffle operation for upsampling.

4. More Analysis of DSC

Due to page limitations, we only quantitatively analyze

the impact of DSC on model performance in the main pa-

per. To demonstrate more intuitively the role of these two

skip connections on the video event restoration task, we per-

form a qualitative analysis here. First, Fig. 1 visualizes the

attention maps of cross attention connection on some sam-

ples of the Ped2, Avenue, and ShanghaiTech datasets. It

can be observed from the Fig. 1 that the cross attention con-

nection is mainly responsible for the transfer and transfor-

mation of dynamic objects features in the foreground. Fur-

ther, we visualize the feature maps of the temporal upsam-

pling residual connection in Fig. 2, and it is obvious that

this skip connection mainly serves the feature transfer and

transformation of the background static objects. In addi-

tion, we can find that the cross attention connection and the

temporal upsampling residual connection in different de-

coding stages are responsible for different foreground and

background parts, which complement each other well. As

shown in the quantitative analysis in Tab.2 of the main pa-

per, the performance of the model not equipped with the

DSC performs very poorly. The qualitative analysis here il-

lustrates more intuitively that the design of the DSC plays

a crucial role in the recovery of static and dynamic objects

in video events, facilitating the USTN-DSC to more accu-

rately model normal behavior patterns to better distinguish

anomalies.



5. Inference Speed
In the inference stage, our method is implemented on

a single NVIDIA RTX 3090 GPU on a machine with

CPU core of i7-10700K@3.80Ghz and 32G memory. Our

method takes on average 5.3 × 10−3 seconds (188FPS) to

process each image of size 256× 256.
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Layer name Structure Output size

Layer 1 Conv2d (3× 3) + BN + LeakyReLU (3, 256, 256, 64)

Layer 2 Conv2d (3× 3) + BN + LeakyReLU (3, 256, 256, 64)

Layer 3 MaxPool2d (2× 2) (3, 128, 128, 64)

Layer 4 Conv2d (3× 3) + BN + LeakyReLU (3, 128, 128, 128)

Layer 5 Conv2d (3× 3) + BN + LeakyReLU (3, 128, 128, 128)

Layer 6 MaxPool2d (2× 2) (3, 64, 64, 128)

Layer 7 Conv2d (3× 3) + LeakyReLU (3, 64, 64, 96)

Table 2. Network architecture of the feature extraction module.

Layer name Structure Output size

Layer 1 Conv2d (3× 3) (9, 64, 64, 384)

Layer 2 PixelShuffle (2) + LeakyReLU (9, 128, 128, 96)

Layer 3 Conv2d (3× 3) (9, 128, 128, 256)

Layer 4 PixelShuffle (2) + LeakyReLU (9, 256, 256, 64)

Layer 5 Conv2d (3× 3) + LeakyReLU (9, 256, 256, 64)

Layer 6 Conv2d (3× 3) (9, 256, 256, 3)

Table 3. Network architecture of the output head.
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Figure 1. Visualization of attention maps of the across attention connection on some samples of the Ped2, Avenue, and ShanghaiTech

datasets. Column (a) denotes the ground-truth frame, and (b) ∼ (e) denote the attention maps generated by cross attention connections

corresponding to the decoder D3 ∼ D0 stages, respectively.



(a) (b) (c) (d)

Figure 2. Visualization of the feature maps of temporal upsampling residual connection on some samples of the Ped2, Avenue, and Shang-

haiTech datasets. Column (a) denotes the ground-truth frame, and (b) ∼ (d) denote the feature maps generated by temporal upsampling

residual connections corresponding to the decoder D2 ∼ D0 stages, respectively.


