
Appendix

A. Limitations and Future Work

In this paper, we propose a novel and more discrimina-

tive anomaly detection model termed as BGAD to tackle the

insufficient discriminability issue and the bias issue simulta-

neously. But there are still some limitations to our method.

Here, we discuss two main limitations as follows:

One limitation of our model is that we employ normal-

izing flow to obtain the explicit separating boundary due

to its exact log-likelihood estimation ability. However, not

all anomaly detection models can generate log-likelihoods,

thus our boundary guiding mechanism can’t be used in these

models directly. A possible solution is that we can use pair-

wise distances (vector dot product of two features) to substi-

tute log-likelihoods, and then obtain the explicit boundary

based on the distribution of normal pairwise distances, and

then use BG-SPP loss to optimize the model to learn more

discriminative features.

Another limitation is that our method requires anoma-

lous samples to achieve better results, but it is difficult to

collect all kinds of anomalies. Thus, generalization per-

formance to unseen anomalies is a critical problem that we

should consider, the experimental results in Table 4, 5 and

10 validate our model’s generalization capability. However,

further improving our model’s generalizability and theoret-

ical analysis of model’s generalizability are still important

and valuable future works. Future work also includes tack-

ling the imbalance problem between normal and abnormal

more effectively and attempting to only use pseudo anoma-

lies in our method, such as the generated pseudo anomalies

in these works [12, 21, 52].

B. Dataset Details

MVTecAD. The MVTec Anomaly Detection dataset [4]

contains 5354 high-resolution images (3629 images for

training and 1725 images for testing) of 15 different cate-

gories. 5 classes consist of textures and the other 10 classes

contain objects. A total of 73 different defect types are pre-

sented and almost 1900 defective regions are manually an-

notated in this dataset.

BTAD. The BeanTech Anomaly Detection dataset [25]

contains 2830 real-world images of 3 industrial products.

Product 1, 2, and 3 of this dataset contain 400, 1000, and

399 training images respectively.

AITEX. The AITEX [43] is a fabric defect inspection

dataset that has 12 defect categories. The original im-

ages in this dataset are 4096 × 256 resolution, we convert

this dataset to MVTecAD format following the converting

method used in the work [12].

ELPV. The ELPV [11] dataset contains 2642 samples

of 300 × 300 resolution. The dataset is used for solar cell

defect inspection and contains two defect categories: mono-

and poly-crystalline.

BrainMRI. The BrainMRI is a brain tumor detection

dataset obtained by magnetic resonance imaging (MRI)

of the brain. The dataset can be downloaded from the

Kaggle competition https://www.kaggle.com/
datasets/navoneel/brain-mri-images-for-
brain-tumor-detection.

HeadCT. The HeadCT is a head hemorrhage detection

dataset obtained by a CT scan of the head. The dataset can

be downloaded from the Kaggle competition https://
www.kaggle.com/datasets/felipekitamura/
head-ct-hemorrhage.

C. Implementation Details
As illustrated in Figure 2, we use Efficient-b6 [45] pre-

trained on ImageNet [54] dataset as the feature extractor

to extract three levels of feature maps with {4×, 8×, 16×}
downsampling ratios. The parameters of the feature ex-

tractor are frozen in the training process, only the param-

eters of the normalizing flow are learnable. The extracted

multi-scale features are then transformed to latent space by

the normalizing flow, the normalizing flow is constructed

by 8 coupling layers similar to [15]. We train BGAD and

BGADw/o using Adam optimizer with 2e− 4 learning rate,

200 train epochs, 32 mini-batch size, and cosine learning

rate annealing strategy with 2 warm-up epochs. The nor-

malizer described in sec 3.3 is set to 10 by default, the hy-

perparameter λ in E.q.(9) is set to 1.0 by default, the default

number of transformations in augmentation subset is set as

3. The hyperparameter β is set to 1 by default, and the τ
is set to 0.1 by default. With the default hyperparameters,

our BGAD can achieve effective performance improvement

over NFAD on the six datasets. All the training and test im-

ages are resized and cropped to 256 × 256 resolution from

the original resolution. We also utilize a balanced batch

sampler to ensure that the ratio of normal and abnormal

samples in each mini-batch is 2:1, which can mitigate the

rarity problem at the batch level. Our main code is based

on the CFLOW implementation made public by the authors

of [15] under the MIT license. The pre-trained feature ex-

tractor Efficient-b6 is from the timm [54] library under the

Apache 2.0 license.

The normalizing flow in our model is mainly based on

Real-NVP [14] architecture, but the convolutional subnet-

work in Real-NVP is replaced with a linear subnetwork.

Our CNFlow also combines many design efforts of various

works on normalizing flows from recent works [2, 18, 19].

As in previous works, the normalizing flow in our model

is composed of the so-called coupling layers. In our CN-

Flow, each coupling layer is designed to achieve the forward

or inverse affine coupling computation [14] as illustrated in

Figure 7. And the native coupling layer is followed by ran-
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Figure 7. Illustration of a coupling layer. The transformation co-

efficients are predicted by a subnetwork (subnet), which is com-

posed of fully-connected layers, nonlinear activations, batch nor-

malization layers, etc.. The forward affine coupling can be cal-

culated as y1 = x1; y2 = x2 � exp(s(x1)) + t(x1), and the

inverse affine coupling is then calculated as x1 = y1;x2 =
(y2 − t(y1))/exp(s(y1)).

dom and fixed soft permutation of channels [2], and a fixed

scaling by a constant, similar to ActNorm layers introduced

by [19]. For the coupling coefficients, each subnetwork

predicts multiplicative and additive components jointly, as

done by [19]. Furthermore, we adopt the soft clamping

of multiplication coefficients used by [14]. The imple-

mentation of the normalizing flow in our model is based

on the FrEIA library https://github.com/VLL-
HD/FrEIA, thanks to the authors’ contributions, we can

implement non-trivial normalizing flow conveniently.

The total parameters of our model are 43M, but the learn-

able parameters are only 3.6M. Our model can be trained

by one GPU card, and the memory usage of our model is

only about 2600MB, which means that training our model

generally doesn’t appear out-of-memory issue. In experi-

ments, we train the model on the MVTecAD dataset with

one Titan-XP GPU card, the total training time is about 30

hours, and the inference speed of our model is about 16fps

achieved by Titan-XP. Code will be publicly available on-

line.

D. Error Bound Analysis

Proposition 1. Assume that ϕθ∗ ∈
argminϕθ,θ∈Θ{Lml + λLbg−spp}, and y = 0, y = 1
means normal and abnormal features. Then we have that

Eyi=0[max((b′n − logpi), 0)] + Eyj=1[max((logpj − b′a), 0)]
≤ (bn − ba)Lbg−spp(ϕθ∗) +N/(N +M)[max(1 + b′n,−b′a)]

≤ (d2 log(2π)− 1
2 )(bn − ba)

λ
+N/(N +M) (10)

where the b′n = bn− ε, b′a = ba+ ε, ε ∈ (0, bn− ba), N and
M are the number of normal and abnormal features.

proof. The derivation procedure mainly follows the The-

orem 3 in [7]. We denote that logp1 ≥ logp2 ≥ · · · ≥
logpN+M is a ranking of the log likelihoods, where N and

M are the number of normal and abnormal log likelihoods

respectively. Then for bn = logpN , we have that

Eyi=0[max((b′n − logpi), 0)] + Eyj=1[max((logpj − b′a), 0)]

≤ (b′n − b′a)L0
bg−spp(ϕθ∗) +N/(N +M)[max(1 + b′n,−b′a)]

≤ (bn − ba)Lbg−spp(ϕθ∗) +N/(N +M) (11)

where the L0
bg−spp means the �0 norm based formulation

of the BG-SPP loss. The first inequality is obtained by as-

suming the worst case where logp1, . . . , logpN are all mis-

classified and the others are fallen in (ba, bn). The second

inequality is obtained as 1 + b′n ≤ 1 and −b′a ≤ 1 when

−1 ≤ b′a < b′n ≤ 0 satisfies.

Furthermore, for any ϕ0 satisfying Lbg−spp(ϕ0) = 0, by

the optimality of ϕθ∗, we have that

Lml(ϕθ∗) + λLbg−spp(ϕθ∗) ≤ Lml(ϕθ0) + λLbg−spp(ϕθ0)

= Lml(ϕθ0) (12)

and thus (the similarity function g in BG-SPP loss is spec-

ified as the general exponentiated-cosine distance function

for simplifying derivation)

Lbg−spp(ϕθ∗)

≤ (Lml(ϕθ0)− Lml(ϕθ∗))/λ

≤ 1

λ

(
1

2
ϕθ0(x)Tϕθ0(x)− 1

2
ϕθ∗(x)Tϕθ∗(x)

+
1

2
ϕθ∗(x)Tϕθ∗(x) +

d

2
log(2π)

)

≤ 1

λ

(
− 1

2
+

d

2
log(2π)

)

=
d
2 log(2π)− 1

2

λ
(13)

The second inequality is obtained by assuming the worst

initial states:

ϕθ0(x)Tϕθ0(x) = −1 (14)

By combining the above E.q.(11) and E.q.(13), we have that

Eyi=0[max((b′n − logpi), 0)] + Eyj=1[max((logpj − b′a), 0)]

≤ (d2 log(2π)− 1
2 )(bn − ba)

λ
+N/(N +M) (15)

The above proposition demonstrates that the necessity

and usefulness of the BG-SPP loss, because increasing the

hyperparameter λ would assist the error bound in converg-

ing to zero. And the proposition also implies that increas-

ing anomalies will benefit the reliability of the normal and

abnormal discrimination. We also empirically validate the

effect of λ on the detection results in Table 7, the results are

evaluated on the hard subsets (described in sec L) from the

MVTecAD dataset.



Table 7. AUROC and PRO results on the MVTecAD dataset ac-

cording to the hyperparameter λ.

λ 1 5 10

Image AUROC 0.983 0.984 0.985

Pixel AUROC 0.984 0.985 0.985

PRO 0.945 0.947 0.950

E. BG-SPP Loss Analysis
We can transform the first part of our BG-SPP loss as

follows:

N∑
i=1

|min((logpi − bn), 0)|

=
N∑
i=1

|max((−logpi + bn), 0)|

=
N∑
i=1

| − bn||max((logpi/bn − 1), 0)|

=

N∑
i=1

|bn|max((logpi/bn − 1), 0)

(16)

Note that as bn is negative, we can’t transform

|max((−logpi+ bn), 0)| to |bn||max((−logpi/bn+1), 0)|,
which is not correct. If we replace logpi/bn by z,

the first part of our BG-SPP loss can be rewritten as∑N
i=1 |bn|max((z − 1), 0), which can be seen as a rescaled

hinge loss (max(1 − z, 0)) but with opposite optimization

direction. The second part of our BG-SPP loss can also

be transformed to
∑N

i=1 |bn − τ |max((−logpi/(bn − τ) +
1), 0), which can be seen as a rescaled version of the hinge

loss.

F. RandAugment-based Pseudo Anomaly Gen-
eration

The whole procedure of RandAugment-based Pseudo

Anomaly Generation (RPAG) is illustrated in Figure 8.

More generated abnormal samples by RPAG are shown in

Figure 9.

The advantage of RPAG is that learning from generated

samples to recognize irregularities can generalize well to

unseen anomalies. The limitation is that RPAG is still not a

perfect imitation of real anomalies.

Effect of RandAugment-based Pseudo Anomaly Gen-
eration. To show the effectiveness of RandAugment-based

Pseudo Anomaly Generation, we show experimental results

with or without RPAG in Table 8. It can be found that our
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Figure 8. Process to generate abnormal samples.

bottle cable capsule

carpet grid hazelnut

leather metal_nut pill

screw tile toothbrush

transistor wood zipper

Figure 9. Generated abnormal samples by RPAG. All product cat-

egories of the MVTecAD dataset are shown in the Figure.

method can effectively improve the detection performance

even if only five anomalies per category are used. Under

the setting of five anomalies, the results can be improved

by 0.3%, 0.3%, and 1.0% for image-level AUROC, pixel-

level AUROC, and PRO, respectively. Under the setting of

ten anomalies, the results can be improved by 0.5%, 0.3%,

and 0.7% for image-level AUROC, pixel-level AUROC, and

PRO, respectively.

Comparison with Other Pseudo Anomaly Genera-
tion Strategies. In DRAEM [52] and NSA [41], the au-

thors also attempt to utilize synthetic anomalies, we com-

pare our RPAG strategy with their strategies and show re-

sults in Table 9. The strategy in [52] is by using texture

samples to simulate anomaly regions and by using Perlin

noise to capture a variety of anomaly shapes. This strat-

egy may generate invalid anomalies (i.e., anomalies appear

in the background) as it will generate anomaly areas in

the whole image, while our strategy can ensure to gener-

ate more valid anomalies by region limitation. NSA [41]

integrates Poisson image editing to seamlessly blend scaled

normal patches of various sizes from other normal images.

By contrast, the anomalies simulated by our strategy are

more realistic than those in [41] as it’s based on a few real

anomalies. Compared with these anomaly generation strate-

gies, the RPAG is more suitable for our method as it can

exploit a few known anomalies more sufficiently.



Table 8. The ablation study on the MVTecAD dataset to verify

the effectiveness of RandAugment-based Pseudo Anomaly Gener-

ation and Asymmetric Weighting. n: n existing anomalies used in

training.

5 10 RPAG AW Image AUROC Pixel AUROC PRO

0.968 0.979 0.946

� 0.982 0.985 0.959

� � 0.985 0.988 0.969

� 0.983 0.991 0.969

� � 0.988 0.992 0.973

� � � 0.993 0.992 0.976

Table 9. Comparison of our RPAG strategy with the pseudo

anomaly generation strategies in DRAEM [52] and NSA [41].

Strategy Image AUROC Pixel AUROC PRO

DRAEM [52] 0.970 0.979 0.946

NSA [41] 0.977 0.979 0.946

RPAG 0.988 0.992 0.973

G. Asymmetric Weighting
We further propose Asymmetric Weighting (AW) for the

objective function to focus on hard normal features and ab-

normal features to mitigate the rarity problem.

Weighting for Hard Normal Features. For easy nor-

mal features, the weights are assigned as 1. For hard normal

features, higher weights should be assigned. Let αn and γn
are the normal focusing parameters, we propose Truncated

Focal Weighting as follows:

Fwni =

{
1.0, if logpi > logpn;

−αn(1− pi)
γn logpi, if logpi ≤ logpn.

(17)

Weighting for Abnormal Features. Abnormal features

with larger log-likelihood can be regarded as hard positives.

We propose Reversed Focal Weighting to assign higher

weights for abnormal features and much higher weights for

hard positives. However, the weighting factors may be less

than 1 for abnormal features with smaller log-likelihoods in

Reversed Focal Weighting. Therefore, we introduce a trun-

cation term, 1 will be assigned as weights for easy abnormal

features. Let αa and γa are the normal focusing parameters,

the weighting formula is defined as follows:

Fwaj
=

{
−αa(1 + pj)

γa 1
logpj

, if logpj > logpa;

1.0, if logpj ≤ logpa.
(18)

Hyperparameter Settings. In E.q.(17), we set logpn =
−2 (features with log-likelihoods larger than −2 can be

regarded as easy normal features empirically), and αn =
15, γn = 1 to make Fwni more smooth at logpi = −2. In

E.q.(18), we set logpa = −20 (features with log-likelihoods

less than −20 can be regarded as easy abnormal features

empirically), and αa = 0.53, γa = 2 to make Fwaj more

smooth at logpj = −20.

Detailed Weighted Learning Objective. The detailed

weighted learning objective is formulated as follows:

L = Lml �FW1 + λLbg−spp �FW2

= Ex∈Xn

[
Fwni · (

1

2
ϕθ(x)

Tϕθ(x)

−
∑L

l=1
log|detJϕl

(yl−1)|+
d

2
log(2π))

]

+

|Xn|∑
i=1

Fwni · |min((logpi − bn), 0)|

+

|Xa|∑
j=1

Fwaj · |max((logpj − bn + τ), 0)| (19)

Effect of Asymmetric Weighting. As shown in Table

8, the detection and localization performance can be further

improved by Asymmetric Weighting. The experimental re-

sults show that RandAugment-based Pseudo Anomaly Gen-

eration and Asymmetric Weighting can mitigate the rarity

problem effectively.

H. More Results under the One-Class Setting
In Table 10, we show more results under the one-class

setting. All the other results are from [12]. However, in

[12], only image-level AUROCs are reported, and the re-

sults of some categories shown in Table 10 are missing.

Comparison to Unsupervised Baseline. Our BGAD

can outperform the baseline NFAD across all the datasets,

especially on the object categories with more complex nor-

mal patterns (e.g., Capsule, Screw, Transistor). This shows

our model’s better generalizability to unseen anomalies.

I. Effect of Semi-Push-Pull Mechanism
In Table 11, we show more comparison results between

BGAD† and BGAD. As shown in Table 11, the BGAD†

performs less effective than the BGAD, and even worse

than the baseline NFAD. The comparison between BGAD

and BGAD† shows that the semi-push-pull mechanism in

BGAD is critical for mitigating the bias issue.

J. Hyper-parameter Sensitivity
The main tunable hyperparameters of our model are

the normal boundary (controlled by β) and the abnormal

boundary (controlled by τ ). As shown in Table 12, we eval-

uate different combinations of β (1%, 5%, 10%) and τ (0.1,

0.2, 0.3). From Table 12, we can draw the following main

conclusions: 1) β has a more significant effect on perfor-

mance compared with τ , and pixel-level AUROC is insen-



Table 10. AUC results under the one-class setting, where models

are trained with only one anomaly class and tested to detect other

anomaly classes. ·/· means image-level and pixel-level AUROCs.

Dataset Known Class
Baseline Ten Training Anomaly Samples

NFAD DevNet FLOS SAOE MLEP DRA BGAD (Ours)

A
IT

E
X

Broken end 0.835/0.828 0.658/- 0.585/- 0.712/- 0.732/- 0.693/- 0.856/0.824

Broken pick 0.960/0.982 0.585/- 0.548/- 0.629/- 0.555/- 0.760/- 0.948/0.983
Cut selvage 0.834/0.830 0.709/- 0.745/- 0.770/- 0.682/- 0.777/- 0.865/0.844
Fuzzyball 0.815/0.827 0.734/- 0.550/- 0.842/- 0.677/- 0.701/- 0.823/0.825

Nep 0.834/0.828 0.810/- 0.746/- 0.771/- 0.740/- 0.750/- 0.838/0.825

Weft crack 0.827/0.692 0.599/- 0.636/- 0.618/- 0.370/- 0.717/- 0.841/0.685

Mean 0.851/0.831 0.683/- 0.635/- 0.724/- 0.626/- 0.733/- 0.862/0.831

E
L

P
V Mono 0.860/- 0.599/- 0.629/- 0.569/- 0.756/- 0.731/- 0.884/-

Poly 0.870/- 0.804/- 0.662/- 0.796/- 0.734/- 0.800/- 0.880/-

Mean 0.865/- 0.702/- 0.646/- 0.683/- 0.745/- 0.766/- 0.882/-

B
o
tt

le

Broken large 1.000/0.989 -/- -/- -/- -/- -/- 1.000/0.991
Broken small 1.000/0.987 -/- -/- -/- -/- -/- 1.000/0.988
Contamination 1.000/0.994 -/- -/- -/- -/- -/- 1.000/0.996

Mean 1.000/0.990 -/- -/- -/- -/- -/- 1.000/0.992

C
ap

su
le

Crack 0.934/0.990 -/- -/- -/- -/- -/- 0.984/0.991
Imprint 0.955/0.992 -/- -/- -/- -/- -/- 0.990/0.993

Poke 0.936/0.989 -/- -/- -/- -/- -/- 0.984/0.991
Scratch 0.951/0.989 -/- -/- -/- -/- -/- 0.994/0.990
Squeeze 0.928/0.990 -/- -/- -/- -/- -/- 0.988/0.991
Mean 0.941/0.990 -/- -/- -/- -/- -/- 0.988/0.991

G
ri

d

Bent 0.990/0.994 -/- -/- -/- -/- -/- 0.989/0.995
Broken 0.982/0.993 -/- -/- -/- -/- -/- 0.994/0.994
Glue 0.990/0.993 -/- -/- -/- -/- -/- 1.000/0.994
Metal 0.982/0.993 -/- -/- -/- -/- -/- 0.992/0.994
Thread 0.982/0.995 -/- -/- -/- -/- -/- 0.990/0.996
Mean 0.985/0.994 -/- -/- -/- -/- -/- 0.993/0.995

H
az

el
n

u
t Crack 1.000/0.996 -/- -/- -/- -/- -/- 1.000/0.997

Cut 1.000/0.984 -/- -/- -/- -/- -/- 1.000/0.985
Hole 0.997/0.981 -/- -/- -/- -/- -/- 1.000/0.985
Print 0.997/0.981 -/- -/- -/- -/- -/- 0.999/0.984
Mean 0.998/0.985 -/- -/- -/- -/- -/- 1.000/0.988

S
cr

ew

Manipulated 0.887/0.991 -/- -/- -/- -/- -/- 0.957/0.993
Scratch head 0.874/0.988 -/- -/- -/- -/- -/- 0.927/0.990
Scratch neck 0.861/0.987 -/- -/- -/- -/- -/- 0.944/0.989
Thread side 0.927/0.992 -/- -/- -/- -/- -/- 0.965/0.994
Thread top 0.878/0.988 -/- -/- -/- -/- -/- 0.943/0.989

Mean 0.885/0.989 -/- -/- -/- -/- -/- 0.947/0.991

T
il

e

Crack 0.997/0.979 -/- -/- -/- -/- -/- 1.000/0.978

Glue strip 0.997/0.967 -/- -/- -/- -/- -/- 1.000/0.979
Gray stroke 0.999/0.963 -/- -/- -/- -/- -/- 1.000/0.969

Oil 0.997/0.959 -/- -/- -/- -/- -/- 1.000/0.967
Rough 0.998/0.977 -/- -/- -/- -/- -/- 1.000/0.987
Mean 0.998/0.969 -/- -/- -/- -/- -/- 1.000/0.976

T
ra

n
si

st
o

r Bent lead 0.979/0.925 -/- -/- -/- -/- -/- 0.988/0.921

Cut lead 0.982/0.927 -/- -/- -/- -/- -/- 1.000/0.935
Damaged 0.985/0.921 -/- -/- -/- -/- -/- 0.989/0.919

Misplaced 0.991/0.945 -/- -/- -/- -/- -/- 1.000/0.994
Mean 0.984/0.929 -/- -/- -/- -/- -/- 0.994/0.942

W
o

o
d

Color 0.995/0.968 -/- -/- -/- -/- -/- 0.994/0.974
Combined 0.994/0.970 -/- -/- -/- -/- -/- 0.994/0.977

Hole 0.994/0.968 -/- -/- -/- -/- -/- 0.999/0.973
Liquid 0.994/0.967 -/- -/- -/- -/- -/- 0.992/0.970
Scratch 1.000/0.986 -/- -/- -/- -/- -/- 0.999/0.988
Mean 0.995/0.972 -/- -/- -/- -/- -/- 0.995/0.976

Table 11. AUROC results under the one-class setting. ·/· means

image-level and pixel-level AUROCs.

Method
Category

Bottle hazelnut Grid Tile Wood

NFAD (baseline) 1.000/0.990 0.998/0.986 0.985/0.994 0.998/0.969 0.995/0.972

BGAD† 1.000/0.983 1.000/0.978 0.987/0.988 0.999/0.967 0.994/0.969

BGAD (Ours) 1.000/0.992 1.000/0.988 0.993/0.995 1.000/0.976 0.995/0.976

sitive to the hyperparameters. 2) Our model is not very sen-

sitive to the margin τ , which means our model can achieve

superior results as long as a certain margin is formed be-

tween normal and abnormal.

K. Learning Efficiency
In addition to the improvement of detection results, our

method can also achieve significant improvement in learn-

ing efficiency. To illustrate the learning efficiency, we show

AUROC vs epoch curve in Figure 10, specifically, the pixel-

level AUROC with a few abnormal samples (FAS) con-

Table 12. AUROC and PRO results on the MVTecAD dataset ac-

cording to hyperparameter β and τ . ·/·/· means mean image-level

AUROC, mean pixel-level AUROC and mean PRO.

β
τ

0.1 0.2 0.3

1% 0.9936/0.9920/0.9749 0.9935/0.9920/0.9752 0.9930/0.9918/0.9748

5% 0.9916/0.9922/0.9759 0.9918/0.9923/0.9763 0.9922/0.9921/0.9762

10% 0.9915/0.9922/0.9759 0.9920/0.9922/0.9764 0.9925/0.9922/0.9762

verges rapidly compared to its counterparts. The AUROC

can increase a large margin generally only a meta epoch (8

epochs) after adding BG-SPP loss for optimization.

Figure 10. AUROC vs epoch curve of cable category on the

MVTecAD dataset.

L. Details of Hard and Unseen Subset Selection
In order to thoroughly verify the effectiveness of our

method, we further construct two more difficult subsets

from the MVTecAD dataset. The first subset is constructed

to evaluate the detection performance, thus we select the

subset based on the image-level AUROC. Specifically, we

select the first subset based on the misclassification at the

image level, i.e. anomaly categories are selected if several

samples of these categories are detected as normal. The sec-

ond subset is constructed to evaluate the localization perfor-

mance, thus we select the subset based on the pixel-level

AUROC. Specifically, anomaly categories are selected if

their pixel-level AUROCs are the lowest among all anomaly

categories. The constructed subsets are shown in Table 13

(Note: As there is only one anomaly class in the toothbrush

category, for simplicity, we set the easy and hard subset as

the same). In order to verify the generalization capability

of our model, we only use the easy subsets as the training

set and validate results on the hard subsets. Thus, the hard

subsets are utilized as the unseen subsets for generalization

capability evaluation.



Table 13. Two hard subsets constructed from the MVTecAD dataset.

First Subset Second Subset

Category Easy Anomaly Categories Hard Anomaly Categories Easy Anomaly Categories Hard Anomaly Categories

T
ex

tu
re

s

Carpet color, cut, hole, metal contamination thread color, cut, hole, metal contamination thread

Grid broken, metal contamination, thread glue, bent bent, broken, glue, metal contamination thread

Leather color, fold, glue, poke cut color, cut, glue, poke fold

Tile crack, glue strip, gray stroke, oil rough crack, glue strip, gray stroke, oil rough

Wood color, combined, hole, liquid scratch color, combined, hole, liquid scratch

O
b

je
ct

s

Bottle broken large, broken small contamination broken large, broken small contamination

Cable bent wire, combined, cut inner insulation,cut outer insulation,missing cable cable swap, missing wire, poke insulation bent wire, cable swap, combined, cut inner insulation, missing cable, missing wire, poke insulation cut outer insulation

Capsule crack, squeeze faulty imprint, poke, scratch crack, faulty imprint, poke, scratch squeeze

Hazelnut crack, hole, print cut cut, hole, print crack

Metal nut bent, color, flip scratch bent, color, scratch flip

Pill color, combined, contamination, faulty imprint, pill type crack, scratch color, combined, contamination, crack, faulty imprint, scratch pill type

Screw scratch head, scratch neck, thread top manipulated front, thread side manipulated front, scratch head, scratch neck, thread top thread side

Toothbrush defective defective defective defective

Transistor bent lead, cut lead, misplaced damaged case bent lead, damaged case, misplaced cut lead

Zipper broken teeth, combined, fabric border, rough, split teeth fabric interior, squeezed teeth broken teeth, combined, fabric border, fabric interior, split teeth, squeezed teeth rough


