HGNet: Learning Hierarchical Geometry from Points, Edges, and Surfaces ——CVPR 2023 Supplementary Material

Ting Yao, Yehao Li, Yingwei Pan, Tao Mei HiDream.ai Inc.

{tingyao.ustc, yehaoli.sysu, panyw.ustc}@gmail.com, tmei@hidream.ai

The supplementary material contains the standard 6-fold cross-validation results of our HGNet [14] on S3DIS benchmark for semantic segmentation task.

1. Semantic Segmentation on S3DIS

Recall that in the main paper, we evaluate our HGNet on S3DIS benchmark by taking Area-5 as the testing scene and the remaining scenes as training set. Here we conduct additional experiments to evaluate our HGNet on S3DIS under the standard 6-fold cross-validation protocol. Table 1 lists the performance comparisons by using 6-fold cross-validation on S3DIS. Similarly, our HGNet clearly surpasses the point-based, edge/relation-based, and surface-based approaches, leading to the best performances across all the three metrics. Specifically, in comparison to PointNeXt-1, HGNet boosts up the performances by 1.2%, 2.0%, and 1.9% in OA, mAcc, and mIoU, respectively. The results again show the effectiveness of our HGNet on semantic segmentation task, even under the 6-fold crossvalidation protocol.

References

- Qingyong Hu, Bo Yang, Linhai Xie, Stefano Rosa, Yulan Guo, Zhihua Wang, Niki Trigoni, and Andrew Markham. Randla-net: Efficient semantic segmentation of large-scale point clouds. In *CVPR*, 2020. 1
- [2] Guohao Li, Matthias Muller, Ali Thabet, and Bernard Ghanem. Deepgcns: Can gcns go as deep as cnns? In *ICCV*, 2019. 1
- [3] Yangyan Li, Rui Bu, Mingchao Sun, Wei Wu, Xinhan Di, and Baoquan Chen. Pointcnn: Convolution on x-transformed points. In *NeurIPS*, 2018. 1
- [4] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas. Pointnet: Deep learning on point sets for 3d classification and segmentation. In *Proceedings of the IEEE conference* on computer vision and pattern recognition, pages 652–660, 2017. 1
- [5] Charles Ruizhongtai Qi, Li Yi, Hao Su, and Leonidas J Guibas. Pointnet++: Deep hierarchical feature learning on point sets in a metric space. 2017. 1

Table 1. Comparison results of HGNet with other state-of-theart methods on S3DIS for semantic segmentation under the 6-fold cross-validation protocol.

Method	OA	mAcc	mIoU	Params.	Throughput
PointNet [4]	78.5	66.2	47.6	3.6M	162
PointNet++ [5]	81.0	67.1	54.5	1.0M	186
DGCNN [11]	84.1	-	56.1	1.3M	8
DeepGCN [2]	85.9	-	60.0	3.6M	3
PointCNN [3]	88.1	75.6	65.4	0.6M	-
PointWeb [16]	87.3	76.2	66.7	-	-
ShellNet [15]	87.1	-	66.8	-	-
PointASNL [13]	88.8	79.0	68.7	22.4M	-
PAConv [12]	-	78.6	69.3	-	-
RandLA-Net [1]	88.0	82.0	70.0	1.3M	159
KPConv [10]	-	79.1	70.6	15.0M	30
RPNet [9]	-	-	70.8	2.4M	-
BAAF-Net [7]	88.9	83.1	72.2	5.0M	10
Point Transformer [17]	90.2	81.9	73.5	7.8M	34
PointNeXt-l [6]	89.8	82.2	73.9	7.1M	115
RepSurf-U [8]	90.8	82.6	74.3	0.99M	69
HGNet	91.0	84.2	75.8	7.8M	92

- [6] Guocheng Qian, Yuchen Li, Houwen Peng, Jinjie Mai, Hasan Abed Al Kader Hammoud, Mohamed Elhoseiny, and Bernard Ghanem. Pointnext: Revisiting pointnet++ with improved training and scaling strategies. In *NeurIPS*, 2022. 1
- [7] Shi Qiu, Saeed Anwar, and Nick Barnes. Semantic segmentation for real point cloud scenes via bilateral augmentation and adaptive fusion. In *CVPR*, 2021. 1
- [8] Haoxi Ran, Jun Liu, and Chengjie Wang. Surface representation for point clouds. In CVPR, 2022. 1
- [9] Haoxi Ran, Wei Zhuo, Jun Liu, and Li Lu. Learning innergroup relations on point clouds. In *ICCV*, 2021. 1
- [10] Hugues Thomas, Charles R Qi, Jean-Emmanuel Deschaud, Beatriz Marcotegui, François Goulette, and Leonidas J Guibas. Kpconv: Flexible and deformable convolution for point clouds. In *ICCV*, 2019. 1
- [11] Yue Wang, Yongbin Sun, Ziwei Liu, Sanjay E Sarma, Michael M Bronstein, and Justin M Solomon. Dynamic graph cnn for learning on point clouds. Acm Transactions On Graphics (tog), 2019. 1

- [12] Mutian Xu, Runyu Ding, Hengshuang Zhao, and Xiaojuan Qi. Paconv: Position adaptive convolution with dynamic kernel assembling on point clouds. In *CVPR*, 2021. 1
- [13] Xu Yan, Chaoda Zheng, Zhen Li, Sheng Wang, and Shuguang Cui. Pointasnl: Robust point clouds processing using nonlocal neural networks with adaptive sampling. In *CVPR*, 2020. 1
- [14] Ting Yao, Yehao Li, Yingwei Pan, and Tao Mei. Hgnet: Learning hierarchical geometry from points, edges, and surfaces. In *CVPR*, 2023. 1
- [15] Zhiyuan Zhang, Binh-Son Hua, and Sai-Kit Yeung. Shellnet: Efficient point cloud convolutional neural networks using concentric shells statistics. In *ICCV*, 2019. 1
- [16] Hengshuang Zhao, Li Jiang, Chi-Wing Fu, and Jiaya Jia. Pointweb: Enhancing local neighborhood features for point cloud processing. In *CVPR*, 2019. 1
- [17] Hengshuang Zhao, Li Jiang, Jiaya Jia, Philip HS Torr, and Vladlen Koltun. Point transformer. In *ICCV*, 2021. 1