
Supplementary Material for
Hi-LASSIE: High-Fidelity Articulated Shape and Skeleton Discovery

from Sparse Image Ensemble

Chun-Han Yao1* Wei-Chih Hung2 Yuanzhen Li3 Michael Rubinstein3

Ming-Hsuan Yang134 Varun Jampani3

1UC Merced 2Waymo 3Google Research 4Yonsei University

We present the implementation details, model analyses, and additional results of Hi-LASSIE in this supplementary doc-
ument. Given the 3D nature of our results, we also provide a short video to describe our framework with illustrations and
visual results. We encourage readers to see the supplementary video for better visualization of our 3D reconstructions.

1. Implementation Details
We implement the Hi-LASSIE framework in PyTorch [8]. All model parameters are updated by an Adam optimizer [4].

The 3D surfaces are rendered at a resolution of 384× 384 for shape optimization. Given an image ensemble with 30 images,
the overall optimization takes roughly 15 minutes on a single GTX 1080 GPU. Note that the random seed initialization does
not affect our optimization outputs much since the most sensitive parameters (e.g. camera, initial pose, part shapes) are not
randomly initialized.

1.1. Notation table

Table 1. Notations. For the key variables in Hi-LASSIE, we list the symbol, variable name, state space, and whether the variable is
instance-specific or shared within an animal class. Generally, we use i for part indexing and j for instance indexing.

Symbol Variable name State space Instance-specific

R̄i Resting part rotation (w.r.t. parent joint) R3×3

si Part scaling (w.r.t. bone length) R
Fi Shared part MLP MLP

π = (R0, t0) Camera viewpoint (R3×3, R3) ✓
Ri Part rotation (w.r.t. parent joint) R3×3 ✓
F∆

i Instance part MLP MLP ✓

1.2. DINO-ViT feature extraction and clustering

Similar to [1,9,10], we extract the key from the last layer of a pre-trained DINO-ViT [2] network as 2D semantic features.
Likewise, we extract the class tokens and use their average attention map as a saliency estimation. To perform high-resolution
optimization, we crop and resize the input images to 1024 × 1024 for feature extraction, resulting in a feature/saliency map
of size 128×128. We then cluster the features of salient image patches by an off-the-shelf K-means algorithm, using number
of clusters c = 8. Finally, we obtain a pseudo ground-truth object silhouette M̂ by thresholding the minimum distance to
cluster centroids and applying dense CRF filtering [5]. Fig. 1 shows some example results of DINO feature clustering.

*Work done as a student researcher at Google.

1



Figure 1. DINO-ViT feature clusters. We show the example images (top) and segmentation masks of 8 semantic clusters (bottom). Al-
though the DINO features provide a dense correspondence between images, they are sometimes noisy due to self-occlusions or ambiguous
texture (e.g., zebra’s head and legs or penguin wings). Instead of directly using these clusters as 3D parts, we find that jointly considering
geometric and semantic cues as symmetry information (e.g., left and right legs) is more robust.

1.3. 3D skeleton and camera viewpoint initialization

We further exploit DINO features to roughly initialize camera viewpoints and identify symmetry plane for 3D skeleton
estimation. Assuming that most animal images are taken from a small range of elevation and mostly vary in azimuth angles,
we propose to roughly cluster them into side and front views by the left-right symmetry information in DINO features. As
shown in Fig. 2, we first sort the images based on their left-right symmetry of DINO clusters. Then, we determine whether a
given reference image is side or front view to identify the symmetry plane and initialize 3D joints. For instance, the symmetry
plane is x = 0 if the image has symmetric features (front view) and z = 0 if the image features are asymmetric (side view).

Side view
(symmetry plane: z = 0)

Left-right symmetric Left-right asymmetric

Images
(sorted)

DINO clusters
(sorted)

Images
(sorted)

DINO clusters
(sorted)

Front view
(symmetry plane: x = 0)

Figure 2. Exploiting DINO clusters for skeleton and symmetry plane initialization. Based on the left-right symmetry information in
DINO clusters, we determine whether a given reference image (marked in red) is side or front view and initialize the symmetry plane and
3D joints accordingly.



Our skeleton discovery assumes a single reference image where most skeletal parts are visible, which is accessible in all
animal image ensembles of our interest. We show additional results using different reference images in Fig. 3, demonstrating
that Hi-LASSIE is generic and robust to various initial poses or self-occlusions as long as all the skeletal parts are visible to
some extent. We observe that these reference images lead to slightly different part configurations, with minimal affects on
final quantitative metrics.

Reference Skeleton Shared parts Shared partsSkeletonReference

Figure 3. 3D Skeleton and parts discovered from different reference images.

1.4. Frequency-decomposed neural surfaces

For each neural part surface, we uniformly sample a set of surface points X = {(x, y, z)|x2 + y2 + z2 = 1} from a unit
sphere and decode their deformation in the canonical space through an MLP network. Unlike LASSIE [10] which uses the
MLP network proposed in NeRS [11], we integrate the multiplicative layers similar to BACON [7] into our part MLPs to
decompose the surfaces in the frequency space. Specifically, each layer encodes a surface point x via positional encoding (PE)
as: PEi(x) = sin(ωix+ϕi), where i = 0, ..., L (number of layers L = 9 in our experiments). The PE frequency is pre-defined
as ωi = 0.25π ·i, which increases with layer index i. After deforming the shared/instance part surfaces in the canonical space,
we then scale, translate, and rotate them by their corresponding bone transformations to obtain an overall articulated shape.
Note that we find symmetric surface points at resting pose to symmetrize the final surface deformation and texture. The shape
reconstruction and regularization losses are applied on the outputs of all layers. The frequency-decomposed part surfaces are
visualized in Fig. 4.

Layer 1 Layer 3 Layer 5 Layer 7 Layer 9

Shared parts Per-instance parts
Shallow
(low-frequency)

Deep 
(high-frequency)

Figure 4. Frequency decomposition of part surfaces. We visualize the neural surface outputs of intermediate layers in our part MLPs.
The outputs of shallow layers contain the low-frequency base shape, and the deep layers produce high-frequency deformations. When
performing instance-specific optimization, we freeze layers 1-6 (shared part MLPs) and only fine-tune the rest (instance part MLPs).



1.5. Optimization pseudo-code

We provide the pseudo-code below to clarify our optimization process. The overall optimization include 5 main stages:
1) camera, 2) pose, 3) shape, 4) all parameters, and 5) per-instance deformation. The parameters are optimized using the
corresponding losses in each stage. In each iteration, we first update the surface feature MLPs, then use the updated features
to optimize 3D surfaces, forming an EM-style optimization. This EM-style optimization can progressively refine the 3D
surface features (semantics) as well as pose and shape fitting (geometry).

Algorithm 1 Hi-LASSIE multi-stage optimization

Parameters: camera viewpoints πj , part scaling {si}, resting part rotation {R̄i}, part rotation {Ri}j , shared part MLPs
{Fi}, instance part MLPs {F∆

i }j (i: part index, j: instance index).
Losses: silhouette loss Lsil, part silhouette loss Lpart, semantic consistency loss Lsem, part rotation loss Lrot, symmetry
loss Lsym, Laplacian regularization Llap, surface normal loss Lnorm.

1: Stage 1 - camera: Optimize πj for all j using Lsem until convergence.
2: Stage 2 - pose: Optimize πj , {si}, {R̄i}, {Ri}j for all i, j using Lsem, Lrot, Lsym until convergence.
3: Stage 3 - shape: Optimize {Fi} for all i using Lsil, Lpart, Lsem, Llap, Lnorm until convergence.
4: Stage 4 - all: Optimize all parameters using all losses until convergence.
5: Stage 5 - instance: Optimize {F∆

i }j for an instance j using Lsil, Lpart, Lsem, Llap, Lnorm until convergence.

Algorithm 2 EM-style semantic and geometric optimization

Parameters: features MLPs {Qi}.
Losses: semantic consistency loss Lsem.

1: repeat
2: E-step: Update {Qi} by sampling 3D surface points, projecting them onto each image, and averaging the corre-

sponding image features.
3: M-step: Optimize neural surfaces using the updated {Qi} in Lsem (Eq. 5 in manuscript). Note that the M-step also

involves updating other parameters with different losses depending on the optimization stage.
4: until end of optimization stage

1.6. Dataset statistics and code licenses

In our experiments, we make use of the publically available Pascal-part [3] (http://roozbehm.info/pascal-
parts/pascal-parts.html) and LASSIE [10] datasets. Each image ensemble contains n = 30 images (n = 16 for
Pascal-Part sheep). Note that the total number of source-target pairs for keypoint or part transfer evaluation is n × (n − 1)
since we exhaustively use every image as source or target. For implementation and evaluation, we also utilize the released
source code or models of the following methods:

• A-CSM [6]: https://github.com/nileshkulkarni/acsm/blob/master/LICENSE (Apache License 2.0)

• 3D Safari [12]: https://github.com/silviazuffi/smalst/blob/master/LICENSE.txt (MIT-License)

• NeRS [11]: https://github.com/jasonyzhang/ners/blob/main/LICENSE (BSD 3-Clause License)

• DINO-ViT [2]: https://github.com/facebookresearch/dino/blob/main/LICENSE (Apache License
2.0)

• DINO clustering [1]: https://github.com/ShirAmir/dino-vit-features/blob/main/LICENSE (MIT-
License)

http://roozbehm.info/pascal-parts/pascal-parts.html
http://roozbehm.info/pascal-parts/pascal-parts.html
https://github.com/nileshkulkarni/acsm/blob/master/LICENSE
https://github.com/silviazuffi/smalst/blob/master/LICENSE.txt
https://github.com/jasonyzhang/ners/blob/main/LICENSE
https://github.com/facebookresearch/dino/blob/main/LICENSE
https://github.com/ShirAmir/dino-vit-features/blob/main/LICENSE


2. Ablative Studies
2.1. 3D skeleton: user annotation v.s. automatic discovery

In Fig. 5, we compare our self-discovered 3D skeleton of zebra against the manually-annotated skeleton in LASSIE [10].
Note that both skeleton share similar bone structures, and yet our skeleton provides better initialization of resting pose, simple
part shapes (length and thickness), and 3D surface features since it is estimated from a reference image in the ensemble.

x

y

z

y

z

y

x

x

y

z

y

z

y

x

LASSIE
(manual annotation)

Hi-LASSIE
(automatic discovery)

Figure 5. Visual comparisons of manually annotated and automatically discovered 3D skeletons. Our skeleton provides a good class-
specific initialization of 3D pose and shape, while LASSIE [10] skeleton contains straight leg bones and uniform part shapes.

2.2. Shared v.s. per-instance parts

We show the qualitative comparisons between shared parts and per-instance parts in Fig. 6, which demonstrate that our
frequency-based decomposition can effectively preserve the 3D part priors learned from all instance while allowing instance-
specific deformation.

Input Shared
2D parts

Instance
2D parts Shared 3D parts Instance 3D parts

Figure 6. Visual comparisons of shared and instance parts. Our instance-specific optimization can produce high-fidelity 3D details to
fit the input images for faithfully.



3. Additional Results
3.1. Animation via pose interpolation

Our skeleton-based representation enables part manipulation like texture transfer or pose transfer between instances. In
Fig. 7, we show some examples of realistic animation generated by pose interpolation between two instances.

Source Target

Figure 7. Animation via pose interpolation. We show the gradual transformation from source to target poses.

3.2. 2D comparisons on LASSIE images

To demonstrate that Hi-LASSIE can produce faithful and detailed 2D parts, we qualitatively compare the 2D fitting results
on LASSIE [10] images in Fig. 8.

Input

DINO 
clusters

Hi-LASSIE

LASSIE

Figure 8. 2D visual results on LASSIE [10] images. Unlike DINO clusters, Hi-LASSIE can clearly separate the semantically similar parts
(e.g., 4 legs) and is more robust to noisy features. Moreover, our results better align with the object boundaries compared to LASSIE [10].



3.3. 3D comparisons on Pascal-Part images

In Fig. 9, we show some qualitative results on the horse and cow images from Pascal-Part dataset [3]. Compared with
A-CSM [6] and LASSIE [10], our results are more detailed and faithful to the input images while requiring less user input.

Input A-CSM LASSIE Hi-LASSIE

Figure 9. Visual comparisons on Pascal-Part [3] images. A-CSM [6] can produce detailed 3D shapes by leveraging a mesh template
and large-scale training images. However, the outputs often contain irregular poses or mis-align with the images. LASSIE [10] generates
consistent 3D parts from the given skeleton, but misses the instance-specific shape details. By comparison, Hi-LASSIE results are high-
quality and faithful to the images.



3.4. Failure cases

Finally, we show some failure cases in Fig. 10 and 11. Since Hi-LASSIE only uses the self-supervisory DINO features as
image-level supervision, its performance is sensitive to incomplete (occlusion/truncation) or noisy (ambiguous appearance)
features. Another limiting factor is the articulation diversity within the given image ensemble. For instance, if an image
ensemble contains only few images or little camera/pose variations, it may be challenging to 1) choose a good reference
image for skeleton discovery and 2) learn detailed 3D shapes from multiple views.

Input DINO clusters 3D parts

Figure 10. Failure cases caused by occlusions/truncation. Our 3D outputs tend to be inaccurate when the pseudo ground-truth silhouettes
are incomplete due to occlusions or truncation.

Input DINO clusters 3D skeleton 3D parts

Figure 11. Failure cases caused by limited image ensemble or ambiguous camera viewpoint. The sheep image ensemble in our
experiments contains 16 images with limited articulation variation, making it difficult to discover a good reference skeleton or learn
detailed 3D shapes. As a result, Hi-LASSIE produces undesired 3D skeleton and inaccurate camera viewpoint estimations.



References
[1] Shir Amir, Yossi Gandelsman, Shai Bagon, and Tali Dekel. Deep ViT features as dense visual descriptors. arXiv preprint

arXiv:2112.05814, 2021. 1, 4
[2] Mathilde Caron, Hugo Touvron, Ishan Misra, Hervé Jégou, Julien Mairal, Piotr Bojanowski, and Armand Joulin. Emerging properties

in self-supervised vision transformers. In ICCV, pages 9650–9660, 2021. 1, 4
[3] Xianjie Chen, Roozbeh Mottaghi, Xiaobai Liu, Sanja Fidler, Raquel Urtasun, and Alan Yuille. Detect what you can: Detecting and

representing objects using holistic models and body parts. In CVPR, pages 1971–1978, 2014. 4, 7
[4] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014. 1
[5] Philipp Krähenbühl and Vladlen Koltun. Efficient inference in fully connected CRFs with Gaussian edge potentials. NeurIPS, 24,

2011. 1
[6] Nilesh Kulkarni, Abhinav Gupta, David F Fouhey, and Shubham Tulsiani. Articulation-aware canonical surface mapping. In CVPR,

pages 452–461, 2020. 4, 7
[7] David B Lindell, Dave Van Veen, Jeong Joon Park, and Gordon Wetzstein. Bacon: Band-limited coordinate networks for multiscale

scene representation. In CVPR, pages 16252–16262, 2022. 3
[8] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia

Gimelshein, Luca Antiga, et al. PyTorch: An imperative style, high-performance deep learning library. In NeurIPS, pages 8024–8035,
2019. 1

[9] Narek Tumanyan, Omer Bar-Tal, Shai Bagon, and Tali Dekel. Splicing ViT features for semantic appearance transfer. arXiv preprint
arXiv:2201.00424, 2022. 1

[10] Chun-Han Yao, Wei-Chih Hung, Yuanzhen Li, Michael Rubinstein, Ming-Hsuan Yang, and Varun Jampani. Lassie: Learning articu-
lated shapes from sparse image ensemble via 3d part discovery. arXiv preprint arXiv:2207.03434, 2022. 1, 3, 4, 5, 6, 7

[11] Jason Zhang, Gengshan Yang, Shubham Tulsiani, and Deva Ramanan. NeRS: Neural reflectance surfaces for sparse-view 3D recon-
struction in the wild. NeurIPS, 34, 2021. 3, 4

[12] Silvia Zuffi, Angjoo Kanazawa, Tanya Berger-Wolf, and Michael J Black. Three-D Safari: Learning to estimate zebra pose, shape,
and texture from images ”in the wild”. In ICCV, pages 5359–5368, 2019. 4


	. Implementation Details
	. Notation table
	. DINO-ViT feature extraction and clustering
	. 3D skeleton and camera viewpoint initialization
	. Frequency-decomposed neural surfaces
	. Optimization pseudo-code
	. Dataset statistics and code licenses

	. Ablative Studies
	. 3D skeleton: user annotation v.s. automatic discovery
	. Shared v.s. per-instance parts

	. Additional Results
	. Animation via pose interpolation
	. 2D comparisons on LASSIE images
	. 3D comparisons on Pascal-Part images
	. Failure cases


