Appendix In this appendix, we will add more details about some experiments reported in the paper, including - 1. The accuracy of classification experiment on ImageNet-C of each corruption, average across all corruption levels, and with corruption level 1-5 respestively. - 2. The precision recall curve for retrieval task on ImageNet and ImageNet-C of each corruption with corruption level 1-5. - 3. The precision recall curve for retrieval task on CIFAR-10 and CIFAR-10-C of each corruption with corruption level 1-5. #### A. Classification accuracy on ImageNet-C In Table Supp.1, we compare the classification performance on ImageNet-C for baseline contrastive model and the proposed models trained with spatial-attention teacher guidance, average over the 5 different corruption/noise magnitudes in ImageNet-C. We further show the classification accuracy on ImageNet-C data set of each corruption type with corruption level 1-5 in Table Supp.2 to Supp.3 here, for our proposed model vs baseline. We can see that the proposed model outperforms baseline for most cases. ## B. Retrieval results on ImageNet and ImageNet-C In Fig Supp.1, we show the retrieval results on ImageNet and ImageNet-C (and CIFAR-10 and CIFAR-10-C) with one corruption: Fog. In Fig Supp.2 to Fig Supp.6, we show the retrieval results on ImageNet ("clean"), and ImageNet-C ("noise level 1-5") of every type of corruption/noise, for the proposed method ("Contrastive attn teacher") compared to the baseline SimCLR ("Contrastive"). We can see that the proposed method obtains better results than the baseline for most corruption/noise types, except "contrast" corruption only. #### C. Retrieval results on CIFAR-10 and CIFAR-10-C In Fig Supp.7 to Fig Supp.11, we show the retrieval results on CIFAR-10 ("clean"), and CIFAR-10-C ("noise level 1-5") of every type of corruption/noise, for the proposed method ("Contrastive attn teacher") compared to the baseline SimCLR ("Contrastive"). We can see that the proposed method outperformed the baseline for all corruption/noise types. # D. Supplementary tables Table Supp.1. ImageNet-C Top-1 classification accuracy for different models (mean \pm SE for 3 seeds). | Model | Brightness | Contrast | Elastic | Pixelate | JPEG | |---------------------------------------|-----------------------------------|--------------------------------------|------------------------------------|------------------------------------|-----------------------------------| | Contrastive | 60.10 ± 0.22 | 52.07 ± 1.24 | 33.00 ± 0.31 | 46.49 ± 0.36 | 45.78 ± 0.36 | | Contrastive attn. teacher | 60.94 ± 0.15 | 52.18 ± 0.16 | 34.42 ± 0.33 | 48.27 ± 1.46 | 46.41 ± 0.60 | | Model | Gaussian | Shot | Impluse | Defocus | Glass | | Contrastive | 28.15 ± 0.27 | 24.18 ± 0.41 | $\textbf{16.64} \pm \textbf{1.23}$ | 23.61 ± 0.47 | 13.45 ± 0.68 | | Contrastive attn. teacher | 28.30 ± 0.54 | 24.84 ± 0.26 | 16.49 ± 0.89 | 24.45 ± 0.59 | 13.87 ± 0.08 | | | | | | | | | Model | Motion | Zoom | Snow | Frost | Fog | | Model
Contrastive | | $Zoom \\ 18.95 \pm 0.60$ | Snow 28.21 ± 0.08 | Frost 29.86 ± 0.18 | Fog
45.34 ± 0.53 | | | | | | | | | Contrastive | 22.21 ± 0.45 | 18.95 ± 0.60 | 28.21 ± 0.08 | 29.86 ± 0.18 | 45.34 ± 0.53 | | Contrastive Contrastive attn. teacher | 22.21 ± 0.45 22.81 ± 1.06 | 18.95 ± 0.60
19.10 ± 0.23 | 28.21 ± 0.08 29.78 ± 0.21 | $29.86 \pm 0.18 \\ 31.13 \pm 0.63$ | 45.34 ± 0.53 46.12 ± 0.52 | Table Supp.2. Classification accruacy on ImageNet-C for each corruption type with corruption level 1-5. | Model | Brightness 1 | Brightness 2 | Brightness 3 | Brightness 4 | Brightness 5 | |---------------------------|------------------|------------------|---------------------------|------------------|------------------------------| | Contrastive | 65.32 ± 0.04 | 63.92 ± 0.12 | 61.57 ± 0.16 | 57.67 ± 0.26 | 52.05 ± 0.55 | | Contrastive attn. teacher | 66.07 ± 0.13 | 64.78 ± 0.22 | 62.42 ± 0.09 | 58.51 ± 0.19 | 52.96 ± 0.26 | | Model | Contrast 1 | Contrast 2 | Contrast 3 | Contrast 4 | Contrast 5 | | Contrastive | 64.21 ± 0.14 | 63.46 ± 0.26 | 61.54 ± 0.56 | 50.55 ± 1.74 | 20.60 ± 3.61 | | Contrastive attn. teacher | 64.78 ± 0.05 | 63.97 ± 0.03 | 61.79 ± 0.07 | 49.66 ± 0.53 | 20.62 ± 0.92 | | Model | Elastic 1 | Elastic 2 | Elastic 3 | Elastic 4 | Elastic 5 | | Contrastive | 57.53 ± 0.13 | 36.38 ± 0.10 | 40.44 ± 0.56 | 24.60 ± 0.76 | 6.03 ± 0.30 | | Contrastive attn. teacher | 58.40 ± 0.35 | 37.76 ± 0.32 | 42.40 ± 0.38 | 26.78 ± 0.42 | 6.75 ± 0.40 | | Model | JPEG 1 | JPEG 2 | JPEG 3 | JPEG 4 | JPEG 5 | | Contrastive | 54.74 ± 0.64 | 51.52 ± 0.81 | 49.02 ± 0.86 | 41.55 ± 0.72 | 32.07 ± 0.62 | | Contrastive attn. teacher | 55.79 ± 0.33 | 52.33 ± 0.47 | 49.78 ± 0.58 | 42.01 ± 0.66 | 32.14 ± 1.06 | | Model | Gaussian 1 | Gaussian 2 | Gaussian 3 | Gaussian 4 | Gaussian 5 | | Contrastive | 53.51 ± 0.39 | 43.37 ± 0.52 | 27.95 ± 0.35 | 12.64 ± 0.81 | 3.30 ± 0.58 | | Contrastive attn. teacher | 53.37 ± 0.30 | 43.24 ± 0.54 | 27.93 ± 0.71 | 13.15 ± 0.81 | 3.63 ± 0.51 | | Model | Shot 1 | Shot 2 | Shot 3 | Shot 4 | Shot 5 | | Contrastive | 49.72 ± 0.42 | 36.65 ± 0.12 | 22.84 ± 0.54 | 8.17 ± 0.86 | 3.51 ± 0.61 | | Contrastive attn. teacher | 50.51 ± 0.53 | 37.49 ± 0.53 | 23.58 ± 0.21 | 8.82 ± 0.69 | $\boldsymbol{3.79 \pm 0.71}$ | | Model | Impulse 1 | Impulse 2 | Impulse 3 | Impulse 4 | Impulse 5 | | Contrastive | 36.02 ± 2.22 | 23.52 ± 1.88 | $15.49 \pm \textbf{1.38}$ | 5.89 ± 0.54 | 2.26 ± 0.28 | | Contrastive attn. teacher | 35.00 ± 1.99 | 22.83 ± 1.77 | 15.39 ± 0.84 | 6.61 ± 0.26 | 2.63 ± 0.34 | | Model | Pixelate 1 | Pixelate 2 | Pixelate 3 | Pixelate 4 | Pixelate 5 | | Contrastive | 57.80 ± 0.19 | 54.04 ± 0.38 | 48.53 ± 0.56 | 39.13 ± 0.43 | 32.94 ± 0.30 | | Contrastive attn. teacher | 58.49 ± 1.14 | 55.05 ± 1.25 | 50.37 ± 1.63 | 41.64 ± 1.82 | 35.81 ± 1.54 | | Model | Defocus 1 | Defocus 2 | Defocus 3 | Defocus 4 | Defocus 5 | | Contrastive | 43.46 ± 0.59 | 34.78 ± 0.91 | 20.78 ± 0.70 | 11.95 ± 0.35 | 7.06 ± 0.49 | | Contrastive attn. teacher | 44.07 ± 0.17 | 35.43 ± 0.42 | 21.84 ± 0.82 | 13.14 ± 0.95 | $\boldsymbol{7.80 \pm 0.78}$ | | Model | Glass 1 | Glass 2 | Glass 3 | Glass 4 | Glass 5 | | Contrastive | 36.65 ± 1.10 | 20.88 ± 1.22 | 4.97 ± 0.55 | 2.92 ± 0.34 | 1.85 ± 0.17 | | Contrastive attn. teacher | 37.71 ± 0.60 | 21.79 ± 0.17 | 5.17 ± 0.40 | 2.80 ± 0.17 | $\boldsymbol{1.89 \pm 0.10}$ | Table Supp.3. Classification accruacy on ImageNet-C for each corruption type with corruption level 1-5. | Model | Motion 1 | Motion 2 | Motion 3 | Motion 4 | Motion 5 | |---------------------------|------------------|---------------------------|---------------------------|---------------------------|------------------------------| | Contrastive | 52.49 ± 0.53 | 35.65 ± 0.73 | 14.49 ± 0.76 | 5.30 ± 0.53 | 3.15 ± 0.36 | | Contrastive attn. teacher | 53.33 ± 0.24 | $36.79 \pm \textbf{1.87}$ | $15.16 \pm \textbf{2.31}$ | 5.53 ± 0.65 | 3.23 ± 0.28 | | Model | Zoom 1 | Zoom 2 | Zoom 3 | Zoom 4 | Zoom 5 | | Contrastive | 31.43 ± 0.57 | 22.00 ± 0.57 | 18.18 ± 0.75 | 13.23 ± 0.67 | 9.89 ± 0.57 | | Contrastive attn. teacher | 31.83 ± 0.31 | 22.23 ± 0.15 | 18.22 ± 0.39 | 13.25 ± 0.47 | $\boldsymbol{9.99 \pm 0.37}$ | | Model | Snow 1 | Snow 2 | Snow 3 | Snow 4 | Snow 5 | | Contrastive | 45.62 ± 0.24 | 25.89 ± 0.14 | 30.01 ± 0.29 | 21.94 ± 0.25 | 17.58 ± 0.24 | | Contrastive attn. teacher | 47.07 ± 0.29 | 27.78 ± 0.25 | 31.54 ± 0.36 | 23.46 ± 0.44 | 19.08 ± 0.22 | | Model | Frost 1 | Frost 2 | Frost 3 | Frost 4 | Frost 5 | | Contrastive | 51.32 ± 0.28 | 34.38 ± 0.13 | 24.29 ± 0.23 | 22.14 ± 0.14 | 17.20 ± 0.15 | | Contrastive attn. teacher | 52.43 ± 0.32 | 35.76 ± 0.69 | 25.65 ± 0.81 | 23.53 ± 0.71 | 18.29 ± 0.65 | | Model | Fog 1 | Fog 2 | Fog 3 | Fog 4 | Fog 5 | | Contrastive | 56.81 ± 0.37 | 52.51 ± 0.45 | 45.87 ± 0.61 | 41.79 ± 0.62 | 29.71 ± 0.62 | | Contrastive attn. teacher | 57.39 ± 0.29 | 53.03 ± 0.54 | 46.68 ± 0.48 | 42.72 ± 0.61 | 30.79 ± 0.69 | | Model | Speckle Noise 1 | Speckle Noise 2 | Speckle Noise 3 | Speckle Noise 4 | Speckle Noise 5 | | Contrastive | 50.53 ± 0.52 | 42.83 ± 0.43 | 23.33 ± 0.24 | 15.47 ± 0.21 | 8.99 ± 0.40 | | Contrastive attn. teacher | 51.48 ± 0.19 | 43.89 ± 0.64 | 24.49 ± 1.18 | 16.25 ± 0.89 | $\boldsymbol{9.61 \pm 0.93}$ | | Model | Gaussian Blur 1 | Gaussian Blur 2 | Gaussian Blur 3 | Gaussian Blur 4 | Gaussian Blur 5 | | Contrastive | 54.82 ± 0.44 | 37.38 ± 0.60 | 22.42 ± 0.09 | 12.36 ± 0.51 | 3.81 ± 0.40 | | Contrastive attn. teacher | 55.97 ± 0.77 | 37.92 ± 0.22 | 23.37 ± 0.86 | $13.74 \pm \textbf{1.03}$ | 4.49 ± 0.52 | | Model | Spatter 1 | Spatter 2 | Spatter 3 | Spatter 4 | Spatter 5 | | Contrastive | 63.95 ± 0.30 | 53.99 ± 0.15 | 41.75 ± 0.12 | 33.13 ± 0.37 | 22.59 ± 0.23 | | Contrastive attn. teacher | 64.70 ± 0.17 | 54.77 ± 0.15 | 42.66 ± 0.41 | 34.37 ± 0.39 | 23.68 ± 0.36 | | Model | Saturate 1 | Saturate 2 | Saturate 3 | Saturate 4 | Saturate 5 | | Contrastive | 64.10 ± 0.24 | 61.33 ± 0.09 | 64.85 ± 0.17 | 59.98 ± 0.20 | 51.83 ± 0.21 | | Contrastive attn. teacher | 64.35 ± 0.27 | 60.63 ± 0.27 | 65.45 ± 0.16 | 60.42 ± 0.20 | 51.64 ± 0.32 | # E. Supplementary figures Figure Supp.1. (a) Precision recall curve for retrieval on ImageNet validation set ("clean") and ImageNet-C with fog corruption ("noise level 1-5"). (b) CIFAR-10 test set and CIFAR10-C. Figures for other corruption types on both data sets can be found in the supplementary material. Figure Supp.2. Precision recall curve for retrieval on ImageNet validation set ("clean") and ImageNet-C with 4 corruptions, each with 5 corruption/noise level ("noise level 1-5"). Figure Supp.3. Precision recall curve for retrieval on ImageNet validation set ("clean") and ImageNet-C with 4 corruptions, each with 5 corruption/noise level ("noise level 1-5"). Figure Supp.4. Precision recall curve for retrieval on ImageNet validation set ("clean") and ImageNet-C with 4 corruptions, each with 5 corruption/noise level ("noise level 1-5"). Figure Supp.5. Precision recall curve for retrieval on ImageNet validation set ("clean") and ImageNet-C with 4 corruptions, each with 5 corruption/noise level ("noise level 1-5"). Figure Supp.6. Precision recall curve for retrieval on ImageNet validation set ("clean") and ImageNet-C with 4 corruptions, each with 5 corruption/noise level ("noise level 1-5"). Figure Supp.7. Precision recall curve for retrieval on CIFAR-10 test set ("clean") and CIFAR10-C ("noise level 1-5"). Figure Supp.8. Precision recall curve for retrieval on CIFAR-10 test set ("clean") and CIFAR10-C ("noise level 1-5"). Figure Supp.9. Precision recall curve for retrieval on CIFAR-10 test set ("clean") and CIFAR10-C ("noise level 1-5"). Figure Supp.10. Precision recall curve for retrieval on CIFAR-10 test set ("clean") and CIFAR10-C ("noise level 1-5"). Figure Supp.11. Precision recall curve for retrieval on CIFAR-10 test set ("clean") and CIFAR10-C ("noise level 1-5").