
Supplementary Material:
AccelIR: Task-aware Image Compression for Accelerating Neural Restoration
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Figure 1. Adjacent accuracy of QP-NET on validation dataset on
training. (dataset: DIV2K)

In the supplementary material, we provide the follow-
ings: 1) We introduce the detailed experimental setup for
the evaluation of the main paper, 2) We present the analy-
sis of individual system components including QP-NET and
the QP allocation method, and 3) We provide the supported
and additional experiment results.

1. Details of Experimental Setup
Datasets. We use the DIV2K dataset [1] (index 0001-0800)
for training and the DIV8K dataset [6] (index 1301-1400).
Especially, the test dataset is downsampled to 4K as used in
other works [8].
IR networks. We use total nine different IR networks:
super-resolution, de-noising, de-blurring. We adjust the IR
network capacity by changing the number of channels to en-
sure that the resulting quality is consistent across all meth-
ods. Specifically, the channel configurations used in the
evaluation are FSRCNN [5] (56, 36 (-35%)), CARN [2] (64,
48(-42%), 40(59%)), EDSR [10] (64, 40(-60%), 32(-74%)),
LatticeNet [11] (64, 48(-21%), 42(-32%)), SwinIR [9] (60,
36(-63%)), DnCNN [13] (64, 56(-24%)), FFDNet [15]
(64, 52(-34%)), IRCNN [14] (64, 52(-34%)) and MIMO-
UNet [4](32, 28(-24%), 26(-34%).

2. Component-wise Analysis
AccelIR allocates QPs across image blocks in two steps.

First, the framework runs QP-NET to predict the best-fitted
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Figure 2. Comparison between the QP allocation method of Ac-
celIR and the optimal version based on exhaustive search.
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Figure 3. The rate-distortion curve of AccelIR and baselines.

IR utility group for each block, retrieving the IR quality
and size profiles of the selected group. Next, the frame-
work finds near-optimal QPs for each block based on the en-
hanced A-star algorithm. Therefore, both the performance
of QP-NET and QP-allocation method critically affect the
amount of IR computation saving.
Accuracy of QP-NET. Figure 1 shows the validation ac-
curacy of QP-NET over the training iterations using the
DIV2K dataset [1]. We measure adjacent accuracy that is
the top-3 accuracy neared to label. As shown in figure, QP-
NET achieves 93% adjacent accuracy in predicting the IR
utility group.
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Accuracy of QP allocation method. Figure 2 shows the
comparison between our QP allocation method and the op-
timal QP allocation based on exhaustive search. The result
shows that the QP allocation of AccelIR is similar to the
optimal one. Note that our algorithm runs in the linear time
complexity while the optimal method requires the exponen-
tial time complexity, which is infeasible for real-world IR
applications.
Comparison with direct IR quality prediction The mini-
mal computing overhead is one of the main contributions of
AccelIR. But, accurate and direct IR quality prediction re-
quires a heavy computation comparable to IR network. To
demonstrate how difficult direct prediction is, we train the
neural net used in AccelIR (QP-NET) to directly predict IR
quality and size and compare with AccelIR’s QP-NET on
1000 random image blocks. Adjacent accuracy of direct
prediction is 72.8%, which is 18% lower than AccelIR’s
QP-NET (90.1%).

3. Extended Evaluation
IR quality gain & Compression gain. AccelIR signifi-
cantly accelerates IR networks under the same IR quality
and image size. Also, AccelIR can deliver a large quality
gain when using the same IR network capacity as shown in
Table 1. Additionally, AccelIR can improve compression
efficiency under the same model capacity, reducing storage
or networking cost. As shown in Figure 3, AccelIR shows a
better rate-distortion curve and improves BD-PSNR [3] by
7.4% compared to the same IR network without AccelIR.
This performance gain is comparable (9.6% BD-PSNR) to
that from designing the new IR network with a similar com-
putational cost; LatticeNet [11] to SwinIR [9].
Other datasets. We additionally evaluate AccelIR on vari-
ous resolutions and datasets: 1) 8K (6720 × 3072) images
sampled from the DIV8K dataset (index 1201-1300) [6],
2) 2K (2040 × 1416) images sampled from the Flickr2K
(index 2551-2650) [12], and 3) images below 2K (1024 ×
1024) sampled from the FFHQ (index 2001-2100) [7]. Ta-
ble 2 shows the quality and computing overhead of five dif-
ferent IR networks [2, 5, 9–11]. The results show that Ac-
celIR consistently delivers a large gain in IR computation
saving on various datasets and resolutions (1K to 8K).
Other scaling factors for SR. We additionally evaluate Ac-
celIR using SR networks with various scaling factor (2×,
3×, 4×). As shown in Table 3, AccelIR reduces the com-
puting overhead by 74%, 69%, and 69% for the scaling fac-
tor of ×2, ×3 and ×4, respectively.
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0.9bpp 1.2bpp 1.8bppModel Encoder PNSR / FLOPs PSNR / FLOPs PSNR / FLOPs
JPEG 24.44dB / 191G 24.88dB / 191G 25.41dB / 191G

24.44dB / 124G (-35%) 24.89dB / 124G (-35%) 25.41dB / 124G (-35%)FSRCNN [5] AccelIR 24.49dB (+0.05dB) / 191G 24.94dB (+0.06dB) / 191G 25.47dB (+0.06dB) / 191G
JPEG 24.72dB / 484G 25.17dB / 484G 25.77dB / 484G

24.72dB / 279G (-42%) 25.17dB / 198G (-59%) 25.79dB / 279G (-42%)CARN [2] AccelIR 24.79dB (+0.07dB) / 484G 25.27dB (+0.10dB) / 484G 25.87dB (+0.10dB) / 484G
JPEG 24.84dB / 1165G 25.28dB / 1165G 25.87dB / 1165G

24.86dB / 462G (-60%) 25.30dB / 298G (-74%) 25.89dB / 298G (-74%)EDSR [10] AccelIR 24.91dB (+0.07dB) / 1165G 25.38dB (+0.10dB) / 1165G 25.95dB (+0.08dB) / 1165G
JPEG 24.75dB / 634G 25.23dB / 634G 25.84dB / 634G

24.75dB / 502G (-21%) 25.23dB / 431G (-32%) 25.84dB / 431G (-32%)LatticeNet [11] AccelIR 24.77dB (+0.02dB) / 634G 25.26dB (+0.03dB) / 634G 25.25.87dB (+0.03dB) / 634G
JPEG 24.91dB / 734G 25.40dB / 734G 26.02dB / 734G

24.96dB / 270G (-63%) 25.44dB / 270G (-63%) 26.06dB / 270G (-63%)SwinIR [9] AccelIR 25.00dB (+0.09dB) / 734G 25.49dB (+0.09dB) / 734G 26.10dB (+0.08dB) / 734G

Table 1. Computation saving & PSNR gain of 5 different SR networks.

DIV8K (6720 × 3072) Flickr2K (2040 × 1416) FFHQ (1024 × 1024)Model Encoder PNSR / FLOPs PSNR / FLOPs PSNR / FLOPs
JPEG 26.06dB / 802G 24.05dB / 70G 30.83dB / 30G

26.06dB / 522G (-34%) 24.06dB / 46G (-34%) 30.83dB / 19G (-34%)FSRCNN [5] AccelIR 26.11dB (+0.05dB) / 802G 24.12dB (+0.06dB) / 70G 30.91dB (+0.08dB) / 30G
JPEG 26.28dB / 2035G 24.37dB / 179G 31.30dB / 76G

26.28dB / 1175G (-42%) 24.37dB / 103G (-42%) 31.34dB / 51G (-34%)CARN [2] AccelIR 26.35dB (+0.07dB) / 2035G 24.45dB (+0.08dB) / 179G 31.40dB (+0.1dB) / 76G
JPEG 26.45dB / 4888G 24.55dB / 430G 31.64dB / 183G

26.47dB / 1270G (-74%) 24.55dB / 112G (-74%) 31.64dB / 73G (-60%)EDSR [10] AccelIR 26.55dB (+0.1dB) / 4888G 24.64dB (+0.09dB) / 430G 31.76dB (+0.12dB) / 183G
JPEG 26.38dB / 2668G 24.50dB / 234G 31.52dB / 100G

26.37dB / 2114G (-21%) 24.50dB / 185G (-21%) 31.52dB / 79G (-21%)LatticeNet [11] AccelIR 26.40dB (+0.02dB) / 2668G 24.53dB (+0.03dB) / 234G 31.58dB (+0.06dB) / 100G
JPEG 26.54dB / 3090G 24.69dB / 271G 31.77dB / 115G

26.53dB / 797G (-74%) 24.75dB / 100G (-63%) 31.83dB / 42G (-63%)SwinIR [9] AccelIR 26.66dB (+0.12dB) / 3090G 24.80dB (+0.11dB) / 271G 31.89dB (+0.12dB) / 115G

Table 2. AccelIR accelerates SR networks on various datasets and resolutions under the same SR quality and image size. Also, AccelIR
enhances the SR quality under the same computation and image size.

DIV8K (6720 × 3072) Flickr2K (2040 × 1416) FFHQ (1024 × 1024)Model Scale Encoder PNSR / FLOPs PSNR / FLOPs PSNR / FLOPs
JPEG 30.58dB / 11013G 28.38dB / 966G 35.07dB / 411G

30.57dB / 2791G (-74%) 28.38dB / 251G (-74%) 35.08dB / 104G (-74%)×2 AccelIR 30.70dB (+0.12dB) / 11013G 28.54dB (+0.16dB) / 966G 35.23dB (+0.16dB) / 411G
JPEG 27.88dB / 6028G 25.99dB / 567G 32.82dB / 221G

27.90dB / 1567G (-74%) 25.99dB / 147G (-74%) 32.86dB / 88G (-60%)×3 AccelIR 28.00dB (+0.12dB) / 6028G 26.11dB (+0.11dB) / 567G 32.93dB (+0.11dB) / 221G
JPEG 26.45dB / 4888G 24.55dB / 430G 31.64dB / 183G

26.47dB / 1270G (-74%) 24.55dB / 112G (-74%) 31.64dB / 73G (-60%)

EDSR [10]

×4 AccelIR 26.55dB (+0.1dB) / 4888G 24.64dB (+0.09dB) / 430G 31.76dB (+0.12dB) / 183G

Table 3. AccelIR still delivers a large benefit on various scaling factors (×2, ×3, ×4) for SR (SR Network: EDSR).
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