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In the supplementary material, we provide more imple-
mentation details and more qualitative results. We discuss
the details of articulation-agnostic hand proxy and how to
apply DDPM loss in the image space for training the Lay-
outNet (Sec. A.1). We also present ablations on Content-
Net(Sec. A.2). We further show: (i) the paired data con-
struction method being robust, in Sec. A.3, (ii) baseline
implementations details in Sec. A.4, (iii) details of inte-
grating our approach to scene-level affordance prediction in
Sec. A.5. Finally, we discuss the limitation of our approach
(Sec. A.6), and show more qualitative results in Sec. B.
Visual results are also included in the video.

A. Implementation Details

A.1. LayoutNet (Sec 3.1)

Layout parameters. As mentioned in Sec 3.1 of the main
paper, we parameterize the layout as (x, y, a, b1, b2), where
x, y is the location, a2 is size, and b1, b2 are un-normalized
approaching direction parameters. For training the Layout-
Net, we obtain the ground truth parameters from off-the-
shelf 2D hand prediction systems. The size and location
comes from the predicted bounding box of a hand detec-
tor [10], which typically defines the hand region up to the
wrist. The orientation is calculated from hand segmenta-
tion whose region is typically defined as the entire hand
region, including hand and forearm. The approaching di-
rection is calculated as the first principal component of a
hand mask that centers on the location of the palm of the
predicted hand.

We splat the layout parameters onto 2D via the spatial
transformer network [4] that transforms a canonical mask
template by a similarity transformation. The 2D similarity
transformation is determined from the layout parameters.
More formally,
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where b̂1, b̂2 is the normalized vector of b1, b2.
The lollipop-shape template in the canonical space is im-

plemented with its circle being an isometric 2D Gaussian
with a standard deviation of 1 and its rectangle being a 1D
Gaussian with a standard deviation s̄ = 2. The width of the
rectangle is calculated from the training data as the average
ratio of the widths of forearms and palms.
DDPM loss on mask. In Eq 1 and 2 of the main paper,
we write the DDPM loss in terms of reconstructing clean
samples. In practice, we follow prior works [6–8] that re-
construct the added noise ϵ as

Lnoise
DDPM = Ex,ϵ∼N (0,I),t∥ϵ− ϵθ(xt, t)∥22.

The estimated clean sample l̂0 is connected with the esti-
mated noise by l̂0 = 1√

1−ᾱt
lt −

√
ᾱt√

1−ᾱt
ϵθ, where αt, ᾱt

represent the noise schedule for each diffusion time step.
We train the LayoutNet with a weighted sum of the pa-

rameter loss Lpara for esitmating the noise term ϵ, and a
mask loss Lmask for estimating the clean sample term l̂0.
The hyperparamter λ is set to 10.
Guided layout generation. LayoutNet inherits proper-
ties from diffusion models that can be guided to generate
samples with additional constraints at test time. We follow
Song et al. [11]. After each diffusion steps, we hijack the
additional constraints with corresponding noise levels for
the next diffusion step.

More specifically, instead of passing in the network’s
output xt from the previous time step, we hijack it with
xt ← x̃tm + xt(1 −m), where m is the indicator mask
of the given condition x̃0. The unspecified constraints in
x̃0 are set to 0. x̃t represents the additional constraint with
corresponding noise level, i.e.

√
1− ᾱtx̃0 +

√
ᾱtϵ.

1

https://judyye.github.io/affordiffusion-www


A.2. ContentNet (Sec3.2)

The goal of ContentNet is to generate high-resolution
(2562) realistic HOI images conditioned on the predicted
layout and the input object image. We tried two differ-
ent approaches commonly used in diffusion models [6,
8] as backbones for the ContentNet. One way (called
ours/AffordDiff-LDM) is to follow Rombach et al. [9], as
described in our main paper, that implements the Con-
tentNet in the latent space where images of size 2562

are compressed to 3-dimensional features of size 642 by
a fixed pretrained autoencoder. The other way (called
ours/AffordDiff-GLIDE) is to follow Nichol et al. [6] that
uses a cascaded diffusion model that first generates images
of size 642 and then upsamples them by a factor of 4.

All of the quantitative results in our main paper, includ-
ing the user studies and all ablations, are based on Afford-
LDM. AffordDiff-GLIDE is better in terms of contact recall
(90.8% vs 87.1%) while AffordDiff-LDM is significantly
better in terms of FID score (99.0 vs 121.6). We find that
AffordDiff-LDM generates less blurry results and the hand
texture appears sharper and more realistic. In comparison,
we find AffordDiff-GLIDE perceptually preferred because
AffordDiff-GLIDE generates more realistic, though blur-
rier, finger articulations. The qualitative results in the main
paper on EPIC-KITCHEN dataset (Fig 1 and Fig4 right in
the main paper) show Afford-GLIDE. However, we provide
the qualitative comparison of Afford-LDM with baselines
in Fig 1 and Fig 2 of the appendix. We further provide a
comparison of these two variants in Fig 7 of the appendix.

A.3. Constructing Paired Training Data (Sec3.3)

Cropping Details. We crop all objects with 80% squared
padding before resizing such that objects (hands) appear in
similar (different) sizes. The model learns the priors of their
relative scales, e.g., a hand to grasp a kettle appears much
smaller than that of a mug (Fig 4).

We show that the proposed method to obtain pixel-
aligned pairs of HOI and object-only images is robust and
can also be applied to more cluttered images. When there
is more than one hand in the HOI image, we randomly se-
lect one to remove. We show results of applying our data
construction method on the HOI4D (Fig 1) and the EPIC-
KITCHEN (Fig 2) datasets.

A.4. Baselines Implementation

Pix2Pix [3] (Sec4.1) We modify the official Pix2Pix im-
plementation1. Given the predicted layout and the pro-
vided object image, we concatenate them channel-wise and
pass them through 6 blocks of ResNet to output HOI im-
ages. The discriminator takes in the concatenation the of the
object-only image, the splatted layout image, and generated

1https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

HOI image and learns to discriminate between the real and
fake domains. We tried batchnorm and instancenorm and
found that batchnorm generated better results in general but
has some black holes if the background statistics deviate
from that of the training set.
VAE [5] (Sec4.1) VAE is notoriously known for being hard
to balance for both generation variance and reconstruction
quality. We sweep hyperparameters of the KL divergence
loss’s weights from 1, 1e− 1, 1e− 2, 1e− 3, 1e− 4 and use
1e− 3 as it produces the highest contact recall.
GANHand [2] (Sec4.2) GANHand is originally proposed
both to predict 3D MANO hands for images of YCB ob-
jects [1] and to optimize physical plausibility with respect
to the known or reconstructed 3D shapes of YCB objects.
We compare our method with their sub-network for grasp
prediction from RGB images (blue branch in their original
paper, Fig 4). The sub-network takes in the object’s iden-
tity, the desk plane equation and the object’s center in 3D
space, in addition to the object image. Since these are not
available in the HOI4D dataset, we set them to zeros. We
apply an additional reconstruction loss for 3D hand joints,
MANO hand parameters and camera parameters. We fine-
tune the network from the public checkpoints for another
10k iterations.

A.5. Scene Integration

We integrate our object-centric HOI synthesis to scene-
level affordance prediction. We first detect the objects in
the scene and then expand the detected bounding box’s size
with the same pad ratio (0.8 of the original object size).
However, when the scene is crowded, the extended object
crops may include other objects thus distracting the layout
generation. We instead crop the object with the detected
bounding box and pad the cropped object with boundary
values. This allows the network to generate hand interac-
tion only for the object of interest.

A.6. Limitation and Failure Cases

Although it is encouraging that the proposed model can
perform zero-shot generalization to the EPIC-KITCHEN
dataset, the proposed method inherits limited generalization
capabilities from general learning-based algorithms. The
proposed model will fail when the object image’s appear-
ance deviates too much from the training set, e.g. for too
cluttered scenes, extreme lighting, very large objects (like
a fridge) or very small objects (like a pin), etc. The cur-
rent model also cannot generate hands entering from the top
of the frame or generate hands from a third-person’s view
due to the bias in the training set. These limitations require
training with more diverse data. Additionally, the consis-
tency of the hand’s appearance and of the extracted hand
poses can be further improved.



B. Qualitative Results
Fig 1 shows more examples of the constructed paired

training data. We train all the models with a uniform mix-
ture of inpainted and SDEdited object images.

Fig 2 shows that the proposed paired data construction is
robust and can be applied to the EPIC-KITCHEN dataset.

Fig 3 shows more comparisons of the generated HOI im-
ages by the proposed method (LDM-version as reported in
tables) and other image synthesis baselines [3, 5, 8] on the
HOI4D dataset.

Fig 4 shows more comparisons of the generated HOI im-
ages by the proposed method (LDM-version as reported in
tables) and other image synthesis baselines [3,5,8] on EPIC-
KITCHEN dataset.

Fig 5 shows more comparisons of the extracted 3D hand
pose obtained by the proposed method and other 3D affor-
dance baselines [2, 8] on the HOI4D dataset.

Fig 6 shows more comparisons of the extracted 3D hand
pose obtained by the proposed method and other 3D affor-
dance baselines [2, 8] on the EPIC-KITCHEN dataset.

Fig 7 shows an ablation study on comparison of the LDM
and GLIDE version of our model on HOI4D and EPIC-
KITCHEN datasets.

Fig 8 shows more layout editing results.
Fig 9 shows more results of heatmap-guided synthesis.
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Figure 1. Visualizing more examples of the constructed paired training data. We train all the models with a mixture of inpainted and
SDEdited object images.



Figure 2. Visualizing the proposed paired data construction applied to EPIC-KITCHEN.
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Figure 3. Visualizing more comparisons of the generated HOI images from the proposed method and other image synthesis baselines [3,5,8]
on the HOI4D dataset.
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Figure 4. Visualizing more comparisons of the generated HOI images from the proposed method and other image synthesis baselines [3,5,8]
on the EPIC-KITCHEN dataset.



Figure 5. Visualizing more comparisons of the extracted 3D hand pose from the proposed method and other 3D affordance baselines [2,8]
on the HOI4D dataset.



Figure 6. Visualizing more comparisons of the extracted 3D hand pose from the proposed method and other 3D affordance baselines on
the EPIC-KITCHEN dataset.



Figure 7. Visualizing the ablation of ContentNet for its LDM-based and GLIDE-based implementations (Sec A.2).



Figure 8. Visualizing more layout editing results.



Figure 9. Visualizing more results of heatmap-guided synthesis.
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Figure 10. Visualizing more scene integration results with the individual prediction from crops.
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