
Supplementary Material for the paper:
“Decoupling Human and Camera Motion from Videos in the Wild”

A. Details of EgoBody evaluation

In Section 4.1 of the main manuscript, we present an
experiment on the EgoBody dataset. Here, we provide more
details about this evaluation.

We report results on the validation set of EgoBody. Re-
garding the estimated camera, we use DROID-SLAM [9]
with ground truth intrinsics. Regarding the person of interest,
we first use PHALP+ [6] (which is the same with out-of-the-
box PHALP, but with a more robust detection system [4]),
on each sequence. Since there may be multiple people in the
frame (but the dataset provides 3D ground truth only for one
main person), we then associate the inferred tracklets with
the person of interest with the 3D ground-truth pose. For
each detected bounding box, we run a 2D keypoint detection
network [10]. We run our method and our baselines [3, 11]
on the detected tracklets using the same detections (bounding
box, 2D keypoints) and ground-truth intrinsics. To accelerate
inference, we split the original videos on sequences of 100
frames and we optimize each sequence separately. We report
results using both local pose metrics, i.e., PA-MPJPE [2] and
global metrics that consider the global estimated trajectory
across the whole reconstructed sequence. More specifically,
we report results in two settings a) after aligning the pre-
dicted sequence with the ground truth sequence using Pro-
crustes (World PA Trajectory - MPJPE), and b) after aligning
the first frame of the predicted sequence with the first frame
of the ground truth sequence using Procrustes (World PA
First - MPJPE).

B. Details of PoseTrack tracking experiment

In Section 4.2 of the main manuscript, we present an
ablation where we leverage the estimated camera and the
optimized scale α for the purposes of tracking on the Pose-
Track dataset [1]. Here, we give more details about this
implementation.

To make a direct comparison with PHALP [6], we make
minimal modifications to the main algorithm. PHALP uses
four cues; appearance, pose, 2D location and nearness of the
person. We did not modify the appearance and the pose cues,
but only applied the effect of the camera on the location cues,
i.e., 2D location and nearness. More specifically, PHALP

estimates the 3D location for each person detection in the
camera frame, using a single-frame HMR model [2]. Given
our estimated camera for each frame (i.e., relative camera
from [9] and estimated world scale α from our optimiza-
tion), we first transform PHALP’s 3D location to the world
frame (i.e., coordinate frame of the first video frame). Next,
PHALP projects these 3D location to the image plane, keep-
ing track of the 2D location, while also recording the depth
(nearness) as a separate feature. For simplicity, we take the
(X,Y, Z) location of each detection in the world frame and,
a) keep the (X,Y ) part of the location of each detection to
represent the 2D location, (after normalizing it to [0, 1], the
same way that PHALP does) and b) use the Z coordinate to
compute the nearness. The rest of the pipeline remains the
same as PHALP. Essentially, the only difference is that the
location of the people are considered in the world coordinate
instead of the camera coordinate frame.

We highlight that we only make minimal adaptations to
the main PHALP algorithm to demonstrate the effect of cam-
era information for tracking, but there is further room for
improvement. For example, considering that we have access
to the explicit 3D location for each detection in the world
frame, we could also explore tracking using 3D location as a
cue, instead of splitting the position cue to 2D location and
depth/nearness, but this would require modification to the
PHALP’s tracking parameters. Similarly, we could lever-
age our optimized results to compute more reliable affinity
metrics on the pose, but here our goal was to decouple the
benefit of the better camera from other cues, i.e., our more
stable pose. It would be an interesting direction for future
work to integrate all these updates and implement a more
robust tracking system using information for camera motion.

C. Additional implementation details
Floor specification: When multiple people are on the
same floor level, our optimization becomes better con-
strained because all of them need to share the same floor g,
meaning that the motion of more people provides constraints
for the optimization of the g variable. However, in many real
world videos, people are in different floor levels. In that case,
when we observe that it is not possible to solve Equation ??
with a single floor variable g, we separate the people in K



clusters based on the locations of their feet, and introduce K
separate floor variables gk. The people in cluster k shares
the same floor gk and the optimization continues as usual.

Handling multiple people A distinct challenge of in-the-
wild videos is properly handling multiple person tracks of
undetermined length as they undergo occlusion. During
the first two stages of optimization, each person’s pose is
optimized independently. During these stages, we only opti-
mize the people that are visible, and mask out losses on the
predictions of any frame and any track that are not visible.

During the last stage, optimizing all tracks in a single
batch allows scale and ground contact information to be
shared between people. To do this in our incremental op-
timization scheme (described in Section 3.4 of the main
text), we store each track with respect to its first appearance,
rather than with respect to the first frame of the video. We
pad the end of each track to be Tmax, the length of the longest
track. Specifically, for each track, we store the start and end
times of the track, (tstart, tend), and latent vectors z0:Tmax . The
latents of each track are contiguous in time (we infill occlu-
sions between the first and last appearances), but do not all
start or end at the same timestep.

In an optimization step at the rollout horizon τ , we roll
out 10τ steps of each track X0:10τ , where X is the decoded
latent state. We then scatter each track X0:10τ into the in-
terval [tstart,min(tend, tstart + 10τ)] of input video’s timeline.
That is, each state Xk synchronized to the original time t
it occurred in, and remove the padded states. We then only
optimize the track over the time segment containing X0:10τ ,
[tstart,min(tend, tstart + 10τ))], and mask out the frames of
each track that fall outside of this interval.

The runtime of optimization grows linearly with the num-
ber of people we track. Optimizing a sequence of around
100 frames and 4 people requires around 40 minutes.

D. Robustness

One of our observations with regards to using the HuMoR
motion prior [8] is that it can be challenging to optimize,
especially over a long sequence. This results in our decision
to optimize the pose sequences of every person in a rollout
horizon, as described in the previous section. This increases
the robustness of the optimization for longer sequences and
it should be applicable to any motion prior that also models
the transition, e.g., [5].

Moreover, HuMoR assumes static camera. When used
on sequences with camera movement, without modeling the
camera motion as we do, it can lead to catastrophic failures
in the optimization. For example, in Egobody, we observed
that HuMoR fails on 30% of the sequences when we use
identity (static) camera. In contrast to that, our approach,
even with imperfect camera motion, i.e., using the estimates

from [9] as we do, leads to successful optimization in 99%
of the sequences; for the rare cases where optimization of
the HuMoR motion prior fails, we simply revert back to
the results of the previous step where we optimize with the
smoothness motion prior.

On the more challenging PoseTrack sequences, we also
observe some rare optimization failures. Most of those are
related to the single floor assumption and can be addressed
by clustering the people in different floors, as described in
Section 3.4 of the main manuscript.

E. Limitations
One of the limitation of our approach is that we rely on

outputs from other methods (e.g., estimated camera from [9]
with approximate intrinsics for in-the-wild videos, person
tracking from [6]), which sometime can propagate failures
to our optimization.

For example, SfM approaches often have trouble distin-
guishing between translational and rotational motions, partic-
ularly with large focal length. Although our optimization can
typically infer reasonable motions even with these imperfect
camera estimation, an exciting future work is to jointly opti-
mize the camera motion and human motion, which requires
also updating the 3D structure.

Another failure mode is in case of identity switch errors in
tracking, with the most harmful being errors that merge two
different people into a single tracklet. Although we do not
explicitly reason about tracklet identity during our optimiza-
tion, we provide an experiment where PHALP makes better
use of information about camera motion (main manuscript,
Section 4.2). Future work could also solve the association
problem while optimizing over people and camera’s motion.

Finally, we observed some inherently challenging mo-
tions to decouple from a monocular video, e.g., when peo-
ple move co-linearly with the camera. In these cases, our
approach can underestimate the location evolution of the
people, e.g., causing people to run in the same location.
Please see the example in the supplemental video. In these
situations, future work could consider also priors for the
background scale, e.g., by using monocular depth cues [7],
which could help to better constrain the scale factor α.
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