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This appendix is organized as follows:

¢ In Section 1, we further illustrate the commonsense lacking issue by providing additional comparison of fundamental
VL datasets with commonly used NLP data.

* In Section 2, we provide more visualizations of success examples of our method on the proposed diagnostic benchmark
for both text-image and image-text retrieval.

* In Section 3, we provide more visualizations of success examples of our method on the OK-VQA benchmark.
* In Section 4, we summarize the statistics of the proposed diagnostic test data.
* In Section 5, we study the failure case of our DANCE augmented model.

* In Section 6, we report additional details of human study and implementation of DANCE.

1. Commonsense in Fundamental VL Data vs NLP Data
1.1. Distribution Comparison Between Current VL Data and More Natural Language Data

We further explore the commonsense lacking issue in the current fundamental VL data by comparing them with common
natural language processing (NLP) data. Here we compare the distributions of the syntactic categories and words of the most
popular VL datasets (COCO [8] and CC 12M [1]) with three commonly used NLP datasets: ConceptNet [ 5] the knowledge
base dataset, Wikipedia [4] the popular [2, 6, 10, 13, 18] cleaned English-language articles with the size of 16GB, C4 [12]
the popular used [3,5,7, 11, 14, 16, 17] English-language text sourced from the Common Crawl web scrape with the size of
745GB. The syntactic categories and word distributions comparison is shown in Fig. 1.

The upper part of Fig. 1 shows the distribution of the most frequent part-of-speech (POS) tags with punctuation marks
excluded, and the lower part shows the most frequent word tokens. There is a significant difference between top POS tag/word
token distributions of VL datasets compared with those of the regular texts. Similar to our observation in the main paper,
the most frequent words in the text in existing VL datasets are nouns (NOUN) for individual entities, like “streer”, “table”,
“train”. In contrast, all the NLP datasets have apparently more verbs (VERB), like “have”, “used”, “find”, “want”, “happen”
that contains richer information about the relationship between entities. Besides, the NLP datasets include more particles
(PRT), like “t0”, and pronouns (PRON) like “your”, which are associated with interconnection information. This further
illustrates the lacking commonsense issue in the fundamental VL datasets.

While the implicit information about the interconnections between entities is in high demand for developing common-
sense and reasoning ability, the fundamental VL datasets are lacking it. This motivates us to use commonsense knowledge to
improve VL data. In addition, the distribution of ours training data is also included for comparison. We can see that our data
is similar to NLP data in terms of the interconnection between entities.

1.2. ChatGPT-Based Commonsense Measurement of VL Data and Natural Language Data

We further design to utilize the ChatGPT’s powerful in-context learning to measure the amount of commonsense infor-
mation for each dataset. We have the score ranges 0-10, and scores descriptive and general language equally, by providing
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Figure 1. Comparison of the syntactic categories and words distributions of fundamental VL data (COCO [8] and CC12M [1]), ours training
data generated by DANCE, and commonly used NLP data (ConceptNet [ 5], Wikipedia [4] and C4 [12]). Commonsense is lacking in VL
data compared with NLP data, and is improved by DANCE strategy.

well-chosen text-score exemplars [9]. Then, 1K sentences (as no official API is available yet and unofficial approaches are
limited) from each dataset are merged, shuffled and fed into it. Our entity names are put back. VL data COCO and CC12M
still scored much lower than language data and ours even after minimizing the impact of language style, which further
confirms the VL data’s lack of commonsense.

Data ‘Wikipedia C4 Ours ConceptNet CC12M COCO
ChatGPT Score\ 7.53  6.82 8.03 8.26 491 525

Table 1. Comparison of the commonsense information amount of VL dataset and natural language dataset by ChatGPT.

2. Additional Qualitative Results on Our Diagnostic Benchmark

In Fig. 2 and Fig. 3, we show additional qualitative comparison with the state-of-the-art VL-models on our diagnostic
test set for text-image and image-text retrieval respectively. In Fig. 2, from left to right is the input text, the input images
including a correct one (in blue) and two incorrect ones (in red), the scores by each individual model, and the commonsense
knowledge from the knowledge graph [15] that required for retrieval. In Fig. 3, from left to right is the input image, the input
texts including a correct one (in blue) and two incorrect ones (in red), the scores, and the related commonsense knowledge
from the knowledge graph. We can see that all the baselines fail to identify the correct answers, which further illustrates the
lacking of commonsense ability in the popular VL-models. In contrast, our DANCE pre-trained model successfully retrieves
the correct ones. We note that all these images and the knowledge are held out from the training set. This further demonstrates
the reasoning ability enhanced by our DANCE strategy.
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Figure 3. Qualitative examples from our diagnostic test set for image-text retrieval.
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Question: Image: Commonsense knowledge:
What celestial body W* T ¥ BLIP: wave [[Ocean tides]] can be
controls the movements | Ours: influenced by the [[moon]]

. urs: moon
of the body of water '
featured in this photo? Human: [[The moon]] is for
moon,moon,moon, [[ocean tides]]

moon,moon,moon,
moon,moon,moon,moon

Question: .
This activity helps to RELIP: toothpaste Commonsense knowledge:
ensure that what Ours: breath You will [[brush your
remains fresh? Human: teeth]] if you want to
brush teeth,brush teeth, [[fresh your breath]]
brush teeth,brush
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breath,breath,brush,brush

Question:
Should we go or R BLIP: slow down Commonsense knowledge:
stop? ours: [[Green light]] means
urs: go [[go ahead]]
Human:
40,90,90,4o,go,
90,90,90,9o,go
Question:
The animal in this 9 BLIP: swim Commonsense knowledge:
image is said to be . [[A dog]l is
man's best what? Ours: friend [la man's best friend]]
Human:

friend,friend,friend,
friend,friend,friend,best

friend,best
friend,dog,dog
Question:
Is this animal o BLIP: male
male or female? Commonsense knowledge:
Ours: female [[Rooster]] has [[a comb]]
Human:

female,female,female,
female,female,female,female,
female,female,female

Figure 4. Qualitative examples from the commonsense-aware benchmark OK-VQA.

3. Additional Qualitative Results on OK-VQA Benchmark

In Fig. 4, we show additional qualitative comparison with the state-of-the-art VL-models on the official validation split
of the popular commonsense-aware OK-VQA dataset. We note that the validation split is not included during fine-tuning.
From left to right is the input question, the input image, the answers by the baseline model BLIP, the DANCE pre-trained
model and human, and the related commonsense knowledge from the knowledge graph. The baseline model struggles
with these questions and predicts some relevant but wrong answers, which further demonstrates the lack of commonsense
ability in the current VL-models. DANCE improves the VL-model’s commonsense ability in numerous aspects, including
the commonsense knowledge of physics as shown in the first row, the commonsense of human behavior and motivation in
the second and third rows, and the knowledge about animals in the fourth and fifth rows. This further demonstrates the
commonsense ability enhanced by our DANCE strategy.

4. Statistics of Our Diagnostic Benchmark
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Text-Image seen  Text-Image unseen Image-Text seen Image-Text unseen

# Images 4949 4974 500 500
# Texts 500 500 13930 14889
# Seen Images 0 0 0 0
# Seen Texts 500 0 13930 0

Table 2. Statistics of different splits of our diagnostic benchmark.

Question: Image: i
oo areon 1212,121212,
this item? 12,12,12,12,12

Figure 5. Case study of failure on the OK-VQA benchmark.

In Table 2, we show the statistics of the four different splits of our diagnostic retrieval test set. Each row respectively
represents the number of different images, the number of different text or riddles in each split, and the number of different
images and texts that also appear in the training data. All these images for our test set does not appear in the training set. The
knowledge in both Text-Image unseen split and Image-Text unseen split is held out from the training set.

5. Failure Case on OK-VQA Benchmark

In the main paper, we mainly focus on enhancing the VL-model’s ability to general commonsense via combining the VL.
data lacking commonsense with commonsense knowledge graphs. However, our model learned from this commonsense-
augmented data still suffers in some special real-life scenarios. Here we visualize the failure case of the model with DANCE
pre-training in Fig. 5. The model fails to answer a question about counting or quantity. This indicates that the sense of
numbers or the mathematical reasoning ability is still weak in existing VL-models, which is also not included in existing
commonsense knowledge bases.

6. Additional Details of Human Study and Implementation

For human evaluation in our main paper, take text-image retrieval for example, annotators are given 15 text samples per
hour and chose n (Line 466) matching images for each. English proficiency is required. The payment is 6.5 USD/hour.

In our implementation of data generation strategy, to extract entities from captions, we use spaCy to extract noun phrases,
remove determiners and adjectives, then double-check POS tag with NLTK. Our manual check of 50 captions found that
88% (126 out of 143) of extraction were successful. 68% of entities are matched with the knowledge base in subsequent
alignment. Though polysemy may cause some noise, human ACC (83%) on our dataset in Table 1 indirectly demonstrates
the low noise rate of generated data pairs. Moreover, even if the data has some noise, the pre-training quality is not affected
as suggested by Table 3 in our main paper.
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