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1. Statistical Analysis for ABC-NEF dataset

We present more statistics of the contributed ABC-NEF
dataset, which consists of 115 distinct and complicated
CAD models. Each model can be described by its topology
(edges and vertices) as well as the geometry (surfaces and
curves). Edges are the oriented connections between 2 ver-
tices, with the most to be sharp edges where normal changes
sharply; Vertices are the basic entities, corresponding to
points in space. We refer to the original ABC dataset [3]
for more detailed explanations.

Therefore, we illustrate the distribution of all mentioned
attributes in Fig. 1. The selected models all contain only
one part, with medium size of a proper number of vertices
n (10000 < n < 30000). The major types of edge and
surface are line and plane, respectively. We also present the
histogram of the vertice, edge and sharp edge numbers in
Fig. 1, to give an impression of the complexity and variety
of the dataset. The distribution of the ABC-NEF dataset is
close to the original ABC dataset [3], but as a new bench-
mark for 3D parametric curve reconstruction, ours focus
more on commonly seen objects of medium size with more
sharp edges.

2. Additional Experiments

Except for this PDF, we also provide several exam-
ples for inference using the provided code in the folder
“NEF test”. The video demo “NEF-video-demo.mp4” also
contain 10 examples of the rendered images, detected 2D
edge maps, re-rendered 2D edge maps, extracted 3D edge
points and reconstructed 3D parametric curves.

Here we provide more training details in Sec. 2.1, ex-
perimental results including the ablation study about the re-
quired number of views in Sec. 2.2, and more comparisons
with state-of-the-arts in Sec. 2.3.

*Corresponding author.

2.1. Training Details

Our method is implemented in the Pytorch [7] environ-
ment and its neural network API PyTorch Lightning [1].
We sample 1024 rays per batch and train our model for 6
epochs (about 46k iterations) with Adam optimizer [2] and
the learning rate of 5 × 10−4. We use a threshold of 0.7
to extract point cloud edges from the learned neural edge
field with a grid size of 256. When optimizing all paramet-
ric curves, we set d = 4 in to connect endpoints that are
already close enough with a learning rate of 0.5. All exper-
iments of our method are conducted on a single NVIDIA
RTX3080Ti GPU.

2.2. Ablation Study

In the proposed ABC-NEF dataset, we sample 50 views
for each object by evenly placing cameras on a sphere. Here
we conduct an extra ablation study about the required num-
ber of views to train neural edge fields (NEF) properly,
where the vanilla NeRF [6] requires about 100 views. We
train the NEF with 5, 10, 30 and 50 views respectively (all
evenly distributed) until convergence. As in the main pa-
per, we also observe the spatial distribution of edge density
by illustrating rendered depth maps for better visualization.
As demonstrated in Fig. 2, 5 views are not enough to cover
the whole object, and thus cannot get complete and clear
edge densities. 10 views can already recover the geomet-
rical shapes for simple cases, but may miss several curves
or generate extra noise in objects with relatively compli-
cated shape structures (e.g. the last two rows in Fig. 2). 30
views and 50 views are both complete and identical to the
real geometrical shape for most cases, which are satisfac-
tory enough.

Considering that the results of 50 views are slightly
clearer, and the time consumption is close for training NEF
by 30 views and 50 views until convergence, we finally de-
cide to sample a unified number of 50 views for all cases for
better performance, although 10−30 views are enough for
most simpler cases.
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(a) Curve Types
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(b) Surface Types
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(e) Sharp Edges

Figure 1. Each model in our dataset is composed of multiple surfaces and feature curves. The first two images show the distribution of
types of curves (a) and surfaces (b) over the current ABC-NEF dataset. Histograms over the numbers of vertices (c), edges (d) and sharp
edges (e) are presented in last three images. Most edges of the selected models are sharp edges in ABC-NEF dataset, which is qualified as
a benchmark of 3D parametric curve reconstruction.
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Figure 2. From left to right, we present 2D images in a given view, followed by the rendered depth map and extracted 3D edge points from
NEF of 5, 10, 30 and 50 views respectively. Rendered depth maps convey the spatial distribution of the edge density field, and 3D edge
points show the extracted geometrical shape. For simple cases, results of 10 views are close to satisfactory, while for complex cases (e.g.
the last two rows), more views are required for better performance.

2.3. More Comparisons

We provide more qualitative comparisons with state-of-
the-art methods of parametric curve reconstruction, includ-
ing PIE-NET [10], PC2WF [4] and DEF [5]. The results are
illustrated in Fig. 3.

3. Limitations
To foster additional works in this field, we briefly

demonstrate several limitations of NEF, which are also po-

tential directions for future work.
Training speed. Currently, it takes about one hour for

NEF to train each model with 50 views, one can reduce the
number of views to speed up with minor performance drops
in most cases, as shown in 2.2. Also, the edge densities in
spatial positions are highly sparse and could be accelerated
by decreasing the samples along rays or integrating other
voxel-based NeRF works for speedup. The coarse and fine
optimization stages cost about 30 and 4 seconds on average,
respectively.



Textured objects. 3D edges exactly lie in areas where
normal changes sharply, while 2D edges also contain other
edge types (e.g. shadow, surface texture). Objects with rich
textures could bring much noise on 2D edge maps and con-
sequently influence extracting 3D edge points and recon-
structing curves. Those noisy edges could be suppressed
from both the image level (classify which edge pixel is
caused by texture discontinuity) and NEF level (recognize
texture edge densities by locating object surfaces).

Edges inside the object. We cannot detect unseen edges
hidden inside the object from only 2D images, and thus can-
not reconstruct the corresponding curves. This is a natural
drawback of our method, and could be tackled by integrat-
ing extra 3D cues (e.g. point cloud, mesh, shape prior).
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Figure 3. More qualitative comparisons against other state-of-the-arts. From left to right, we present the rendered image, the result curves
of PIE-NET, PC2WF, DEF, our reconstructed curves, our 3D edge points obtained from edge densities, and the ground truth edges.
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