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In this document, we provide the supplementary materi-
als that cannot fit into the main manuscript due to the page
limit, including more details and analysis on the proposed
PNC model, as well as more experimental results.

1. More Details of PNC
Here we give more details on the proposed partial net-

work cloning framework, including the estimation of the
local model set, the extended PNC to the multiple sources
case, as well as the overall algorithm.

1.1. Computing the Local Model Set

In order to locate the transferable module Mf in the
source network, we train a model set containing N small
local models G = {gi}(N) to model the sourceMs in the
Dt neighborhood, and then use the local model set as the
surrogate as G ≈ Ms|Dt

. As mentioned in the manuscript,
G is computed as:

G←
{
gi

∣∣∣gi=argmin
gi

1

|B|
∑
b∈B

Πb ·
∥∥Ms(b·xi)−gi(b)

∥∥2
+Ω(gi), i ∈ {1, 2, ..., N}

}
.

(1)

For each xi, we separate the images into H × H patches
as xi = x1

i ◦ x2
i ◦ · · · ◦ xH2

i , and then conduct the mask-
based perturbations on xi with a binary mask b, where b =

{0, 1}H2

. Specifically, the localized xi is in the form of:

(b · xi)
h =

{
xh
i bh = 1

Mean(xh
i ) bh = 0

, (2)

where Mean(·) is for computing the mean RGB values of
a given region and then applying these fixed values to all
the pixels in that region. Πb is for measuring the perturbed
similarity with the original xi, which is:

Πb = e
−
√

cos(b,1)

σ2 , (3)

*† Corresponding author.

where we set σ = 0.25. In this way, G is computed by the
least square method as:

θi = (XT
i Xi)

−1XiYi,

s.t. Xi =
{
x̂i

∣∣x̂i = b · xi, b ∈ B
}

Yi =
{
ŷi
∣∣yi = Πb ·Ms

(
x̂i

)
, x̂i ∈ Xi

} (4)

where θi is an H × H × C weight of gi, and C is the di-
mension of the final FC layer ofMs. Since gi is computed
based on the augmented neighbor of xi, we do not need to
compute gi for all the samples of Dt (N < |Dt|). Then for
the local model set G, the weights are Θ = θ1 ◦ θ2 ◦ ...◦ θN .

1.2. Multi-Network Cloning

The proposed PNC framework is also capable of dealing
with the task of cloning from multiple sources. Here we
discuss two scenarios on multi-network cloning: cloning
different functionalities from different source models, and
cloning the same functionalities from different source mod-
els.

1.2.1 Cloning for Different Functionalities

The source model set is given as Ms =
{M0

s,M1
s, ...,MP−1

s }, where each Mρ
s (0 ≤ ρ < P )

serves for cloning the functionality tρs . We partially clone P
transferable modules Mf = {M0

f ,M1
f , ...,M

P−1
f } with

the P selection functions M = {M0,M1, ...,MP−1} and
Insertion positions R = {R0, R1, ..., RP−1}. The cloned
networkMc can then be denoted as:

Mc ← Clone(Mt,M,Ms, R)

← InsertPρ=0(Mt,Mρ
f , R

ρ).
(5)

In this way, a total of P functionalities are added toMc by
partially cloning from P source networks.

1.2.2 Cloning for the Same Functionality

As for a certain functionality Ts, there may exist multiple
pre-trained models available for the partial network cloning.
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Our goal is thus to select one source network with the
best cloning performance to carry out the partial network
cloning:

M∗
c = argmax

Mρ
c

Acc(Mρ
c)

where Mρ
c ← Clone(Mt,M,Mρ

s , R)

and ρ ∈ {0, 1, ..., P−1}.

(6)

The key of cloning the same functionality from multiple
source networks is, therefore, to determine which source
may contribute to the best cloning performance on the tar-
get network. A straightforward solution is to sequentially
apply PNC from each sourceMρ

s to the target network, so
as to obtain eachMi

c for the accuracy evaluation. However,
this straightforward solution scales up as the number of the
sources increases.

As discussed in the manuscript, G ←M|D can be com-
puted in advance for each pre-trained model, which also
potentially serves as a tool for measuring model distances.
Here, we use the similarity metrics Sim(·|·) as an approxi-
mate indicator to select the optimal sourceM∗

s firstly, and
then apply PNC on the selectedM∗

s , which directly reduces
the learning process in PNC to 1/P . To be specific, the op-
timalM∗

s is:

ρ∗ = argmax
ρ

Sim
(
Mρ

c |Dt,Mt|Dt

)
,

= argmax
ρ

Θρ
s ·Θt

∥Θρ
s∥ · ∥Θt∥

s.t. ρ ∈ {0, 1, ..., P − 1}

(7)

where Θρ is the weight of the local model set computed on
Mρ

s in the Dt neighborhood, and Θρ is the one computed
on the target network. Due to different FC layers of the
target and the source models, alignment needs to be done
for these two weights. We follow the work of ZEST [2] to
carry out the alignment.

In this way, the optimalMc takes the form of

Mρ
c ← Clone(Mt,M,Mρ∗

s , R), (8)

where we only partially clone one transferable module from
one source network, enabling a more efficient PNC.

1.3. Algorithm

The complete algorithm of PNC is given in Alg. 1, where
the ‘Pre-process’ is to get the local model set G and ‘New
Functionality Addition’ is to clone part of the source to the
target.

2. Efficiency and Sustainability Analysis
The proposed partial network cloning is indeed efficient

and sustainable in the following senses:

Algorithm 1 Partial Network Cloning
Require: Ms: source model; Mt: target model; Dt: samples

related to the to-be-clone functionality;
Ensure: Mc: target network added with the new functionality.

1: ————————Pre-process————————
2: For each xi ∈ Dt, segment it into H × H patches as xi =

x1
i ◦ x2

i ◦ · · · ◦ xH2

i ;
3: Generate the binary mask set B with random 0 and 1;
4: Random sample the regions several times as B;
5: Compute the local model set G by Eq. 1;
6: ————–New Functionality Addition————–
7: DivideMs andMt into L blocks.
8: Set loss convergence value set: loss← {}
9: for R : L− 1→ 0 do

10: Initialize adapter AR, classifier FR
c and selector M ;

11: while not convergence do
12: BuildMf ←M ·M[R:L]

s

13: BuildMc ←M[0:R]
t ◦ {M[R:L]

t ,AR ◦Mf} ◦ FR
c

14: Input B ·x toM[0:R]
s ◦Mf , B to G to calculate Lloc;

15: Input B ·x toMc, B to G to calculate Lins;
16: Minimize Lloc + Lins to update AR FR

c and M ;
17: Collect the loss convergence value lossR;
18: end while
19: Update loss as loss.append(lossR);
20: end for
21: Binarize M as ‘0/1’ mask;
22: Determine insertion position R∗ = argmin lossR;
23: Build transferable moduleMf ←M ·M[R∗:L]

s ;
24: ReturnMc ←M[0:R∗]

t ◦ {M[R∗:L]
t ,AR∗

◦Mf} ◦ FR∗
c .

• Data dependency. PNC has decreased the data depen-
dency to about 30%, compared with the normal contin-
ual learning setting; when compared with the network
with scratch training, it reduces to 30%/C, where C is
the total number of classes.

• Training complexity. PNC proposes an efficient train-
ing strategy. Firstly, only the parameters of A, Fc and
M are updated with only a few (about 10) epochs; sec-
ondly, we design a simple but effect searching strategy
for determining the best insertion position.

• Storage. Here we discuss the storage from two as-
pects, offline and online. Offline storage is the exact
storage of Mc, which could enable offline usage af-
ter downloading. And offline storage is the storage for
the part of parameters other than the part that could be
used from model zoo (pre-trained source and target),
which enables online usage together with model zoo.

• Recoverable. PNC proposes to add new functional-
ity to the target network in a recoverable way. In other
words, we can remove the added functionality once we
no longer need it and recover the original target net-
work.



Table 1. Experimental settings on different source target pairs and on different datasets, including the searching steps (‘S Step’), fine-tune
epochs per search (‘Epoch’), percentage of the to-be-cloned data set (‘Data Size’), the number of mask B (‘Aug Num’) and masking rate.

Settings

Dataset Source Target S Step Epoch Data Size Aug Num Masking Rate

MNIST LeNet5 LeNet5 3 10 0.1 100 0.3
CIFAR10 ResNet-18 Plain CNN 3 10 0.3 100 0.3
CIFAR10 ResNet-18 ResNet-18 5 10 0.3 100 0.3
CIFAR10 ResNet-50 ResNet-18 5 10 0.3 100 0.3

CIFAR100 ResNet-18 ResNet-18 5 20 0.3 100 0.3
CIFAR100 ResNet-18 MobileNetV2 5 20 0.3 100 0.3
CIFAR100 ResNet-18 ShuffleNetV2 5 20 0.3 100 0.3

TinyImageNet ResNet-18 ResNet-18 5 20 0.3 1000 0.3

Figure 1. The final searching results on CIFAR-10 and CIFAR-
100 datasets. ResNet-18 is set as the base target network.

3. More Experiments

3.1. Experimental Setting

The parameter settings are listed in Table 1, where the
experiments are done on various datasets (MNIST, CIFAR-
10, CIFAR-100 and TinyImageNet datasets) and archi-
tectures (LeNet, plain CNN, ResNet-18, ResNet-50, Mo-
bileNetV2 and ShuffleNetV2.).

3.2. Ablation Study

Searching Result of Position R For the source and the
target networks in the same architecture, the searching step
is equal to the pre-defined number of blocks L (we use the
most commonly used split). As for the heterogeneous net-
work pairs, where the source network is divided into Ls

blocks and the target network is divided into Lt blocks,
the searching steps are set to be Lt, and for each search-
ing step Rt ∈ {0, 1, ..., Lt − 1}, the corresponding Rs is
set as Rs = [RtLs/Lt]. Fig. 1 shows the searching re-
sult of each R for each settings, where we show the re-
sults on CIFAR-10 and CIFAR-100 datasets, and both the
source and the target are in the same network architecture–

Table 2. Experiments on different data size for training on CI-
FAR10 dataset with ResNet-18 as the base network.

Data Size Ori. Acc Tar. Acc Avg. Acc

1% Dt 60.0 69.5 61.6
10% Dt 85.9 85.8 85.9
30% Dt 94.4 95.8 94.6
60% Dt 94.5 96.2 94.8

100% Dt 94.3 94.9 94.4

ResNet-18. The searching results with larger R mean the
target network shares more of its feature extractor layers
with the transferable module. Thus, as can be observed
form Fig. 1, when the number of to-be-cloned functionali-
ties increase, the searching results with R becomes smaller,
which is mainly because that the transferable module needs
to transfer more knowledge from the source (smaller R also
means larger transferable module).

Size of data for training. As we have stated in the ex-
perimental setting, we only use 30% of the target data as the
training data, which shows the data efficiency of the pro-
posed PNC. Here, we conduct the experiments on how the
size of the data influences the final cloning performance. As
is shown in Table 2, more data included for training would
contribute to better cloning performance, but this promo-
tion becomes smaller when 30% data is used for training.
The main reason is that we augment the training samples in
its neighbor, which has better representative ability for the
source network. As larger data would definitely increase the
training cost, we set the ratio for training to be 30% in the
rest of the experiments.

Number of to-be-cloned functionalities. The position
searching results on different numbers of functionalities are
depicted in Fig. 3. Here we display the results on Table 4.
We partially clone 1,2,3,4 and 5 functionalities from the
source, where cloning 5-label functionality is to transfer all
the functionalities from the source. PNC does good when



Table 3. Experimental results of cloning with different functionalities from different source models. The new functionalities are added
sequentially numbered as 1-9 with 1-label functionality addition (‘s’) and 5-label functionality addition (‘m’).

Methods Params Acc-1 Acc-2 Acc-3 Acc-4 Acc-5 Acc-6 Acc-7 Acc-8 Acc-9 Acc-10 Avg.

Pre-trained ∼ 113.3M 84.8 80.5 80.7 75.2 80.6 83.0 82.8 77.9 85.0 85.5 81.6

PNC-s1 ∼ 13.8M 84.5 81.9 - - - - - - - - 84.3
PNC-s2 ∼ 16.3M 83.1 79.5 83.8 - - - - - - - 82.9
PNC-s3 ∼ 18.8M 83.4 75.6 80.5 80.2 - - - - - - 82.3
PNC-s4 ∼ 20.3M 81.9 74.9 79.3 78.5 80.2 - - - - - 80.9
PNC-s5 ∼ 21.8M 80.6 75.8 76.1 77.6 79.5 84.4 - - - - 80.0
PNC-s6 ∼ 23.3M 79.9 74.2 77.4 77.6 78.8 82.5 85.2 - - - 79.7
PNC-s7 ∼ 24.8M 80.0 75.2 77.9 75.8 77.9 83.7 83.5 80.9 - - 79.7
PNC-s8 ∼ 26.3M 79.2 73.2 76.2 75.2 75.1 82.0 83.4 79.2 86.0 - 79.0
PNC-s9 ∼ 27.3M 73.8 69.7 70.9 69.3 74.3 80.8 76.3 76.4 85.3 87.0 75.2

PNC-m1 ∼ 13.9M 84.6 80.8 - - - - - - - - 83.3
PNC-m2 ∼ 17.1M 83.4 79.7 82.7 - - - - - - - 82.3
PNC-m3 ∼ 19.8M 80.6 77.1 81.4 77.0 - - - - - - 79.3
PNC-m4 ∼ 22.4M 78.4 77.3 80.5 77.4 80.6 - - - - - 78.8
PNC-m5 ∼ 25.0M 78.0 76.8 79.7 75.2 78.9 83.1 - - - - 78.5
PNC-m6 ∼ 28.2M 77.4 77.2 77.7 74.6 79.2 82.7 83.0 - - - 78.7
PNC-m7 ∼ 30.7M 75.5 73.4 76.1 73.8 73.3 82.8 82.9 80.6 - - 77.1
PNC-m8 ∼ 33.9M 75.1 73.1 72.1 72.5 74.4 81.0 81.4 75.3 84.4 - 76.4
PNC-m9 ∼ 37.1M 70.9 66.5 68.9 70.1 66.8 80.5 80.2 75.5 83.8 86.6 74.6

Table 4. Experiments on different numbers of to-be-cloned func-
tionalities on CIFAR10 dataset with ResNet-18 as the base.

Functions Ori. Acc Tar. Acc Avg. Acc

1 94.4 95.8 94.6
2 94.2 95.3 94.5
3 93.7 94.5 94.0
4 93.1 94.6 93.8

5 (Full) 93.3 94.2 94.1

partially transferring a small number of functionalities from
the source (‘Function 1’), while showing its adorable per-
formance even transferring the full set of the source (‘Func-
tion 5’).

3.3. Experiments on Multi-source Cloning

Here we provide the experimental results on cloning
from multiple source models. This part of experiment is
conducted on CIFAR-100 datasets with ResNet-18 as the
base architecture for the target networkMt.

Cloning with different functionalities. We separate the
classification task of CIFAR-100 dataset uniformly into 10
sub-tasks, each trained on ResNet-18 asM1 ∼ M10. We
choose to take M1 as the target network, and the rest as
the source networks. The experimental results are depicted
in Table 3. As is shown in the table, the new network ob-
tained by PNC is much smaller than the original pre-trained
networks, thus providing a resource friendly functional ad-

Table 5. Experiments on cloning with the same functionality from
the source networks with different architectures.

Source

Metrics CNN ResNet-18 ResNet-50

Source Acc 88.1 95.9 96.2
Ori. Acc 91.7 94.4 94.0
Tar. Acc 93.4 95.8 93.3
Avg. Acc 92.0 94.6 93.9

dition method. And it could also be observed that when the
number of source models increases, the average accuracies
drop slightly. As such, cloning from too many source mod-
els is, in reality, not a good way for adding new function-
alities to the target model. An efficient way to apply PNC
is to choose the pre-trained target network that has the most
similar functionalities as required and then choose the least
number of source models to transfer the rest functionalities.

Cloning with the same functionality. Here we sepa-
rate the CIFAR-10 dataset uniformly into 2 sub-tasks, one
is trained on ResNet-18 as the target, the other subset is
trained on plain CNN, ResNet-18 and ResNet-50 separately
as three different source networks. We choose to clone one-
label task from the source networks. The corresponding re-
sults are depicted on Table 5. As can be observed from
the table that, when the similarity score increases, the PNC
performance has been promoted, which has proved the ef-



Table 6. Experiments on incremental learning on split CIFAR-100
dataset, where the dataset is split into 10 sub-tasks.

Method Recov. ? Extra Params Avg. Acc

Grow [7] yes 1.3× 54.7
APD [6] no 1.3× 57.5
CPG [1] no 1.3× 60.1

GROWN [5] yes 1.2× 60.8
FFNB [3] yes 0.5× 68.1
DER [4] yes 0.8× 72.5

PNC (Ours) yes 0.1× 73.6

fectiveness of the source model selection strategy.

3.4. More Comparisons with Continual Learning

We note that the most related work to the proposed PNC
is the architecture-based continual learning, which aims at
minimizing the inter-task interference via newly designed
architectural components. Following the previous work [5],
the methods listed for comparison can be further divided
into two steams:

• Grow only: This stream of methods only grow the
model for each task without effect on the pre-trained
backbone part during training, which also means re-
coverable when simply abandoning the new-grow ar-
chitectures.

• Grow-and-prune: This stream of methods gradually
grow and prunes the backbone model for each new
task, which also mean unrecoverable.

We compare the proposed method in two ways, one is
to sequentially add new functionalities and the other is to
sequentially remove these functionalities again. Thus, the
performance is evaluated in both the class-incremental and
the class-decremental manners (whether it is recoverable?
‘Recov.?’). The comparative results are depicted in Table 6.
It could be observed that, the proposed PNC obtain the best
performance on incremental learning, with its operation-
recoverable property and the least extra parameters (only
need new parameters for the light-weight adapt modules).
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