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We provide more implementation details, including
training and inference (Sec. A), network architecture
(Sec. B), sphere tracking (Sec. C), network training
(Sec. D), the evaluation matrices (Sec. E), more qualitative
results (Sec. F and G), and limitations (Sec. H) in the sup-
plementary material.

A. Training and Inference Details
Training device and time. All experiments are conducted
on a single RTX3090, and it takes about 8 hours to train
each scene. Note that the average rendering time to segment
each view is 0.925s thanks to the usage of sphere tracing,
which is much faster than using volume rendering (67.2s).
Thus, even for the largest number of views in all evaluated
scenes, i.e., 477, it takes only 7.35 min to render all im-
ages and all the time used for segmentation is about 30 min,
which is only a small fraction of the training time (8 h).
Hyper-parameters. The weights of eikonal loss λeik,
depth loss λd and super-plane loss λplane used in the train-
ing process are 1.0, 1.0, and 0.1 respectively. The auto-
filtering threshold α is set to 0.9. When evaluating the
performance of planar segmentation, the non-planar edge
region detection threshold γ is set to 0.85 and set to 0.9
during training to ensure the robustness of edge region de-
tection. Besides, when evaluating the plane segmentation
performance, we apply a median blur filter with kernel size
9× 9 to smooth the input images.

B. Network Details
Our geometric network gθ is an 8-layer MLP with a hid-

den dimension of 256, while the color network fϕ is another
4-layer MLP with the same number of hidden dimensions.
The complete network architecture is shown in Fig. 1.

C. Sphere Tracing
We adopt the sphere tracing method [1] to produce

the normal maps, where the procedure is shown in Algo-
rithm. 1.
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Figure 1. Network Architecture. Our network outputs SDF value
ŝ and radiance value ĉ.

D. An Iterative Training Procedure
We summarize the whole training procedure mentioned

in Sec. 3 of the main paper in Algorithm. 2. Our method op-
timizes the surface reconstruction result in an iterative way,
where the super-plane segmentation and surface reconstruc-
tion quality are progressively improved.

To better understand the effect of our iterative training
procedure, we visualize the surface normal map and the seg-
mentation after each update of the segmentation masks. As
shown in Fig. 3, the quality of the reconstruction and planar
segmentation results are improved iteratively. Fig. 3 also
shows the non-plane edge region detection results (black ar-
eas in super-plane segmentation maps) during training.

E. Evaluation Metrics
The definition of metrics used for 3D reconstruction

evaluation is shown in Tab. 1. The plane and pixel recalls [2]
used for evaluating plane reconstruction results are defined
as follows: we first treat a ground truth plane as correctly
predicted if it satisfies the following two conditions: (1)
There exists a predicted plane that has an IoU larger than
0.5 with it. (2) The average depth difference between the
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Algorithm 1 Adapted sphere tracing algorithm for a camera ray xi = o+ div over the signed distance fields gθ.
Input: max iteration N
Output: surface position xN

1: Initialize n = 0, d0 = 0, x0 = o.
2: while n < N do:
3: Calculate the SDF value ŝn of point xn: ŝn = gθ(xn)
4: dn+1 ← dn + ŝn
5: xn+1 ← o+ dn+1v, n← n+ 1.
6: end while

Algorithm 2 Training procedure of S3P.
Input: max training iteration M , update interval for super-plane segmentation t

1: for i = 1 to N do
2: if i % t == 0 then
3: Update normal maps and super-plane segmentation masks
4: Clean up segmentation masks with the auto-filtering and non-plane region detection strategies
5: Update super-plane normal
6: end if
7: if i ≥ t then
8: Train with super-plane loss in Eq. 5 of the main paper
9: else

10: Train without super-plane loss ▷ Initialize geometric structure
11: end if
12: end for

ground truth plane and the corresponding predicted plane is
smaller than a threshold varying from 0.05m to 0.6m with
an increment of 0.05m. Then, the plane recall is defined as
the percentage of correctly predicted planes, and the pixel
recall is the percentage of pixels within all correctly pre-
dicted planes.

Metric Definition

Acc meanp∈P (minp∗∈P∗ ||p− p∗||1)
Comp meanp∗∈P∗(minp∈P ||p− p∗||1)
Prec meanp∈P (minp∗∈P∗ ||p− p∗||1 < .05)
Recal meanp∗∈P∗(minp∈P ||p− p∗||1 < .05)
F-score 2·Perc·Recal

Prec+Recal

Table 1. Evaluation Metrics. P and P ∗ are the point clouds
sampled from predicted and ground truth mesh.

F. Comparison of Plane and Super-plane
To better understand the difference between plane and

super-plane segmentation, we visualize the results produced
by our method in Fig. 4. It can be seen that our super-planes
are typically larger than individual planes since parallel As
mentioned in the main paper, planes are grouped together,
which provides more accurate averaged normals and thus
facilitates the training process.

G. Plane Reconstruction Visualization
We show the piece-wise planar reconstruction results in

Fig 5. It can be seen that our method can produce accurate
planar segmentation and further recover accurate planar sur-
faces.
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Figure 2. Plane Segmentation Failer Case. Our method may fail
to separate two closely connected parallel planes.

H. Limitations
1) For some thin non-planar regions, if the baseline

model of our method cannot recover it, adding super-plane
constraints does not help. 2) When the angle between a
pixel’s surface normal and the super-plane normal is very
small, the auto-filtering strategy may fail. However, We
found the reconstruction results are not largely affected be-
cause it is acceptable to treat pixels with the tiny surface
normal angle differences as the same plane. We will add



these analyses to the revised paper. 3) The planar segmen-
tation result may not be able to separate two closely con-
nected parallel planes as shown in Fig. 2. This may be
solved by separating the planes using an edge detection al-
gorithm.
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Figure 3. Visualization of Iterative Refinement Procedure. The first and second rows in each group represent the super-plane segmen-
tation and surface normal results after each update. The black areas in the super-plane segmentation maps represent the area where the
non-planar edge regions are detected.
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Figure 4. Comparison of Plane and Super-plane. Different colors in the segmentation map represent different clusters. Our super-plane
segmentation groups the pixels belonging to parallel planes into the same cluster.
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Figure 5. Unsupervised Piece-wise Planar Reconstruction Results by S3P. The depth map is generated using the sphere tracing algorithm
mentioned in Sec. C.
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