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Supplementary Material

Figure 1. Test-time Personalization Dataset annotation tool.
Our user interface contains two key components: (top) A video
player that shows the visual reference of the target named instance.
(bottom) A gallery of “clickable” candidate shots to be labeled as
positives. The pink borders denote the selected positive samples,
for the instance "Zak’s frisbee".

Overview
In this supplementary, we first provide additional de-

tails of the algorithm for the automatic mining of named
instances in videos (Section A). Then in Section B, we give
additional details about the process of collecting annota-
tions for our dataset. Section C provides additional imple-
mentation details of our approach and the evaluation met-
rics. Section D explores alternative approaches for mining
instances, i.e., using Part-of-Speech (POS) and Named En-
tity Recognition (NER). Section E discusses some limita-
tions of our approach. Finally, Section F discusses addi-
tional qualitative results of personalized retrieval.

A. Automatic Mining of Named Instances in
Video

Spotting Named Instances. We provide more details here
of how we spot named instances (Section 3.1 of the main
paper). We keep up to four words after a possessive text
pattern is matched based on text-visual similarity. Given
a sequence of words [q1, . . . , q4] we extract embeddings
fl([q1]), fl([q1, q2]), . . . , fl([q1, . . . , q4]) with CLIP’s text
encoder. We then compute the cosine similarity with the
visual reference embedding fv(s

∗) and keep the longest
sequence of words with cosine similarity greater than 0.3.

This strategy allows us to find relatively clean instance
names. For instance, let us suppose we string-match the
candidate instance this is my "dog waggy he
is". Our approach would allow us to keep dog waggy
as the instance name. We obtain the cleaned name given
that additional words, he is, would yield a lower than 0.3
text-visual similarity.

Filtering non-visual instances. Regarding the filtering
procedure for non-visual instances outlined in Section 3.1,
we find that high visual-language similarity is observed
when the candidate named instance features nouns or
phrases that distinctly describe a visible object instance in
the video. High visual-language similarity occurs for both
general object categories (such as ”my car”) and more spe-
cific descriptions (”my 2018 Honda Civic”). Thresholds for
spotting and filtering named instances were determined us-
ing cross-validation on a small curated validation set.

B. This-Is-My Dataset
Test-time Personalization Dataset P . We provide more
details about our annotation tool (Section 4 of the main pa-
per). Figure 1 (this supplemental) includes a screenshot of
the annotation tool used to annotate the test-time person-
alization dataset. We implemented a simple user interface
that shows the named instance (top) and a gallery of candi-
date shots (bottom). The interface auto-plays all candidate
shots and allows the annotator to label the positive samples
by clicking the video. Leveraging the interface, we are able
to label the 1000 candidates for each instance in 20 min-
utes. Therefore, we spent around five hours annotating the
15 instances of the test-time personalization dataset.

C. Additional Implementation Details
In all our experiments, we rely on the Adam opti-

mizer [3] with a weight decay set to 10−5. The learning
rate follows a cosine annealing schedule [5] with a
maximum learning rate of 0.1. Next, we describe the
implementation details for the two datasets.

Baselines. In the CLIP (language) baselines, we pass only
the manually labeled object category (e.g., ”dog”) to the
text encoder, which prevents confusion caused by queries
containing names of specific instances such as "Zak’s
dog Coffee" and "My dog Biscuit".

DeepFashion2 Experiments. Each test-time training is
performed for 40 epochs with a batch size of 512. In this



setting, learning the 50 instance tokens takes about 10
minutes in total on a single GPU. We perform 10 rounds
of meta-personalization for the pre-training of category
features C, each round consisting of 32 pseudo instances
per category (only a single training image per instance
is available). Each training round consists of 10 epochs,
and we use a batch size of 512. We identify 14 categories
for DeepFashion21. Our CLIP (language) baseline uses
these categories in place of the learned instance tokens for
retrieval.

This-Is-My Experiments. Each test-time training is per-
formed for 40 epochs with a batch size of 16, which takes
less than two minutes on a single T4 GPU. We use 512
randomly chosen distractor shots at each training iteration
during test-time personalization. Meta-personalization
consists of 10 rounds of training, with each round lasting
for 20 epochs. We use a batch size of 512 and do not
include any distractor shots.

Evaluation Metrics. For completeness, we provide defini-
tions for the retrieval metrics used in our experiments. Let
Rij be indicators of whether the retrieved video shot for
query i at rank j is a correct match, i.e., Rij = 1 if the j-
th shot retrieved for query i is showing the correct instance
(in the right context), and Rij = 0 otherwise. Let further
ranki = min{j|Rij = 1}. We then have
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j=1 Rij is the number of relevant shots for
query i, N is the number of queries and K the number of
shots in the retrieval dataset.

Hyper-parameters. We use COCO [4] classes as the ob-
ject categories l ∈ Y , since they represent common and
general objects. We set the temperature parameter λ = 0.1

1List of DeepFashion2 categories: [’long sleeve dress’,
’long sleeve top and skirt’, ’long sleeve top
and trousers’, ’long sleeve top and vest dress’,
’short sleeve top and shorts’, ’short sleeve
top and skirt’, ’short sleeve top and sling
dress’, ’short sleeve top and trousers’, ’shorts
and vest’, ’skirt and sling’, ’skirt and vest’,
’sling dress’, ’trousers and vest’, ’vest dress’]

to a standard default value used in contrastive losses (e.g.,
SimCLR [1]). We choose λc = 0.5 through cross-validation
and find that our model’s performance is robust with respect
to different values of λc.

D. Alternatives for Mining Instances

We explore alternative approaches for spotting named in-
stances (Section 3.1 of the main paper). In our approach, we
set the list of possessive text patterns for mining empirically.
After annotating a small sample, we observed that those pat-
terns yield a larger number and more precise set of named
instances compared to other alternatives such as Part-of-
Speech (POS) and Named Entity Recognition (NER) (see
Table 1 in this supplemental). Interestingly, combining our
approach for possessive text pattern matching with an ad-
ditional NER filter can improve the precision of the mined
instances. For simplicity, we do not apply the NER filter for
our final collected dataset as described in the main paper.

E. Discussion

We discuss potential limitations of our work and high-
light key differences to prior work [2].

Handling of multiple subjects featured in a video.
During data collection, we did not regulate the number of
subjects featured in each clip; as a result, there could be
instances where multiple subjects are presented. These
multiple subjects may affect the precision of our mining
approach, particularly if the subjects belong to the same
visual category. Nevertheless, we have observed that
specific objects are usually visually conspicuous when
mentioned. For example, when the speaker mentions This
is my dog <Fido>, a close-up or zoom-in shot of the
dog are typically shown. In future work, the narration’s
contextual information (e.g., <Fido> eating) could be
utilized to differentiate instances with several subjects.

Size of the This-Is-My test-time personalization dataset.
Our This-Is-My dataset contains a modest number of
instances; however, the search space is very large (around
50K shots, including distractors). We also acknowledge
that creating this dataset posed a considerable challenge,
as it required identifying instances across numerous videos
and annotating each shot per video.

Differences to PALAVRA [2]. Our work distinguishes it-
self from [2] in three crucial aspects:

1. Model: [2] models instance tokens independently,
whereas our method represents them as a weighted
sum of shared category features learned through meta-
personalization. As demonstrated in ablation (a) of



Table 1. Alternatives for mining instances. We annotate 100 candidate instances for different mining approaches, including, Part-of-
Speech (POS) and Named Entity Recognition (NER). We report the number of true named instances and the precision for each method.
Possessives w/ NER filter denotes our mining approach combined with a filter that discards candidate instances without recognized entities.
Combining possessives with POS yields much lower precision, thus not included in this table.

w/o visual filter with visual filter
Method # named instances Precision # named instances Precision

POS (nouns) 19 19.0% 15 36.6%
NER 21 21.0% 17 38.3%

Possessives (ours) 58 58.0% 46 63.1%
Possessives w/ NER filter 48 64.0% 39 70.5%

Table 1 in the main paper, our design improves the
model’s generalization capabilities.

2. Training Data: Unlike [2], which requires a set of
labeled examples per instance, we propose a method
to mine training examples from narrated videos.

3. Training Objective: Our method proposes a con-
trastive training objective for test-time personalization,
whereas [2] requires additional networks (see set en-
coder in [2])

This-Is-My vs. YTVOS [6] for personal video instance
retrieval. In contrast to [2], which used YTVOS by taking
query and retrieval frames from the same video, we explore
a more challenging scenario where query and retrieval shots
are from different videos, showing the instance in different
contexts.

F. Qualitative Results for Contextualized In-
stance Retrieval

Figure 2 provides additional qualitative results for the
contextualized instance retrieval task on the This-Is-My
dataset. It compares the Top-5 retrievals of our ap-
proach and the CLIP (language) baseline given a lan-
guage query. Both methods can successfully retrieve
shots that match the generic context of the query, e.g.,
eating food with a white plate (third row).
However, the baseline fails at retrieving the correct person-
alized instance, e.g., "Zak’s dog Coffee" (third row).
In the example of Casey’s son is standing at
the beach without wearing shirt (last row),
the CLIP (language) baseline fails to find the personalized
instance since it does not have a representation for the in-
stance "Casey’s son". Contrarily, our model finds the
correct named instance in the right context. This result is
due to our model expanding the input space of the VLM by
personalizing a representation of the learned instance while
maintaining the general abilities of the underlying VLM.

Figure 3 shows successful and failure cases of our model
on the contextualized instance retrieval task. (top) We ob-

serve that our method correctly retrieves the personalized
instances even in challenging scenarios. For instance, it
can retrieve small instances such as "Casey’s boosted
board" and "Blippi’s shows" for different context
queries. By keeping the VLM frozen, our method preserves
the original VLM’s capabilities to match natural language
queries to the candidate set of shots. (bottom) While our
method significantly improves the state-of-the-art in per-
sonalized retrieval, we observe some common failure cases.
One typical example is discriminating between instances
that are too similar. For instance, "Sherry’s road
bike" is confused with another black bike. Our method
is also limited by the VLM’s capabilities to understand ac-
tions such as grabbing Sherry’s road bike. The
former failure case could be addressed by leveraging addi-
tional cues from the transcript and the latter by leveraging
progress on motion-aware VLMs.
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Figure 2. Qualitative Retrieval Comparison to the CLIP (language) Baseline. While the baseline is able to accurately match the features
in the scene that match the described context, it fails to retrieve the correct instance. In contrast, our personalized VLM successfully matches
both context and personalized instance. Search prompts are shown on the left and correct retrievals are highlighted in green.



Figure 3. Qualitative examples of retrieval using our personalization approach. Top: Successful examples where the correct instance
is retrieved within the top five retrieved shots. Bottom: Examples of failures where the correct instances is not retrieved within the top five
retrieved shots.


