
Supplementary Material of
A Simple Framework for Text-Supervised Semantic Segmentation

A. Implementation Details
A.1. Implementation Details of Training

The implementation follows ZeroVL [3], which provides
a training guidance that allows to conduct CLIP [12] with
less resource and public data.

Architecture. The image and text encoders are ViT-
S/16 [6] and BERT-base [5], respectively. The image and
text encoders are trained from scratch. The encoded image
and text features are projected into 512-dim embeddings by
single layer perceptrons.

Training. AdamW [10] optimizer is used for training, and
the weight decay is 0.2. The learning rate is initialized to
3e-4. The learning rate schedule is cosine decay, with a
minimum learning rate at 3e-5 (i.e., minimum scale of 0.1).
The model is trained for 20 epochs, where warmup epochs
account for 2.5% of the entire training procedure. The tem-
perature of contrastive loss is learnable and initialized to
0.07. The batch size is 4096.

config value

optimizer AdamW
base learning rate 3e-4
weight decay 0.2
optimizer momentum β1, β2=0.9, 0.98
batch size 4096
learning rate schedule cosine decay
minimum lr scale 0.1
training epochs 20
warmup proportion 0.025
base temperature 0.07

Table 5. Training setting.

Augmentation. During pre-training, batches are com-
prised by randomly sampling image-text pairs from pre-
training datasets. We apply two augmentation techniques
for images, the first one is “crop and resize”, the second one
is AutoAugment [2].

The “crop and resize” operation comes from [3,12], each
image is randomly cropped to a rectangular region with as-
pect ratio sampled in [3/4, 4/3]. The ratio of preserved area
is sampled in [60%, 100%]. Then we resize the cropped re-
gion to 224×224 resolution.

AutoAugment [2] searches data augmentation policies
with reinforcement learning and considers a wide range of
operations including translation, rotation, shearing, color
normalization, etc. We adopt the AutoAugment policy
learned on ImageNet.

Regarding the text modality, 20% input words are pro-
cessed during augmentation. For each word, we mask it,
replace it with a random word, or delete it with a probabil-
ity of 50%, 10% and 40%, respectively.

A.2. Implementation Details of Evaluation

Augmentation. No augmentation is used during zero-
shot semantic segmentation evaluation except for resizing
the images to 288 × 288 resolution.

COCO protocol. We evaluate the performance of our
method in the COCO-Stuff dataset [1]. Following the prac-
tice of [13], 80 foreground object classes are used. We com-
bine the instance masks of the same category to get the se-
mantic segmentation mask for each image.

DenseCRF parameters. We adopt the two most-
common pairwise potentials (i.e. Gaussian and bilateral),
with the default arguments. The inference has 3 iterations.

B. Additional Experiments

We first examine the effects of LoDA on zero-shot
image-text retrieval and linear probing classification tasks.
Next, we reveal some ablation details.

B.1. Image-Text Retrieval

To evaluate the representation ability of our proposed
LoDA method, Flickr30K [11] and MSCOCO [9] bench-
marks are leveraged for zero-shot image-text retrieval tasks.

As reported in Table 6 and 7, our proposed LoDA
method outperforms the baseline in every metric. Regard-
ing RSUM, our method is 1.5 points higher than baseline on
Flickr30K and 8.3 points highter on MSCOCO. Zero-shot
image-text retrieval performance is an important prerequi-
site for semantic segmentation. The retrieval ability helps
to provide correct object classes of images.



method Flickr30K
image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 RSUM
w/o LoDA 78.7 94.0 97.3 60.8 84.9 90.5 506.2
w/ LoDA 78.8 94.3 97.5 61.2 85.0 90.9 507.7

Table 6. The LoDA ablation results of zero-shot image-text re-
trieval on Flickr30K datasets.

method MSCOCO
image-to-text text-to-image

R@1 R@5 R@10 R@1 R@5 R@10 RSUM
w/o LoDA 49.9 75.7 83.8 34.4 60.9 71.6 376.3
w/ LoDA 51.8 76.6 85.4 35.7 62.3 72.8 384.6

Table 7. The LoDA ablation results of zero-shot image-text re-
trieval on MSCOCO datasets.

B.2. Zero-shot Classification

Evaluation of the linear classification task is performed
on ImageNet [4] dataset. As shown in table 8, LoDA im-
proves the zero-shot classification performance.

method Acc@1 Acc@5

w/o LoDA 46.6 74.2
w/ LoDA 47.1 74.6

Table 8. The LoDA ablation results of zero-shot classification on
ImageNet-1k.

B.3. Linear Classification

config value

optimizer LARS
base learning rate 0.1
optimizer momentum 0.9
batch size 32768
learning rate schedule cosine decay
warmup epochs 10
training epochs 90

Table 9. Linear probing settings.

Evaluation of the linear classification task is performed
on ImageNet [4] dataset. We follow the setup in MAE [7]
to evaluate linear classification performance. The optimizer
is LARS [14] without weight decay. The base learning rate
is 0.1. We train with batch size 32768 for 90 epochs, where
warmup epochs are 10. For data augmentations, we perform
standard cropping and resizing. The classifier is a single-
layer perceptron.

As shown in Table 10, our method achieves 0.6 points
higher than baseline on top-1 accuracy and 0.2 points higher

method Acc@1 Acc@5

w/o LoDA 64.6 87.3
w/ LoDA 65.2 87.5

Table 10. LoDA ablation of linear classification on ImageNet-1k.

on top-5 accuracy. These results signify the effectiveness
and robustness of the proposed LoDA approach.

B.4. Ablation Details

In Section 5.3, we study the most significant hyper-
parameters MI and MT in evaluation and pre-training
phases. We use figures rather than tables for a more vivid
illustration. The detailed mIoU results of these ablation ex-
periments are reported in Table 11 and 12. Best results are
bold and default settings are marked in gray .

MI

mIoU 1 3 5

MT
1 55.4 56.3 56.6
3 45.1 45.2 45.9
5 33.3 33.0 33.0

Table 11. Evaluations on PASCAL VOC with various MI and
MT in zero-shot evaluation.

MI

mIoU 1 3 5

MT
1 40.9 48.7 37.3
3 54.1 55.3 51.9
5 54.3 56.3 56.6

Table 12. Evaluations on PASCAL VOC with various MI and
MT in pre-training.

C. Visualizations
C.1. Similarity Maps

We verified that LoDA addresses the problems of dense
alignment. i.e., (1) LoDA makes vision encoder perceives
main objects. (2) LoDA makes main objects and context
equally significant in the image-text contrasting. Similar
with Figure 3, we provide more examples in Figure 10.

C.2. Segmentation Results

PASCAL VOC 2012. We illustrate in Figure 11 the qual-
itative results of our approach on the PASCAL VOC 2012
validation set. Our approach correctly identifies target ob-
jects and produces accurate masks.

PASCAL Context. We show additional qualitative results
of our approach on the PASCAL Context validation set.
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Figure 10. Visualization of more patch-wise similarity maps on Flickr30K test set. For each sample, we show (1) original image-text
pair, (2) sI2I , (3) sT2I regarding to the original caption, and (4) sT2I regarding to manually revised captions (non-contextual words vs.
contextual words). In each revised caption, the modified key entity words are marked in colors. For sT2I maps, the overall image-text
similarity score provided by CLIP is attached.
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Figure 11. Qualitative results of SimSeg on PASCAL VOC.
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Figure 12. Qualitative results of SimSeg (w/o CRF) on PASCAL VOC.
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Figure 13. Qualitative results of SimSeg on PASCAL Context.

C.3. Effects of CRF

SimSeg does not rely on CRF [8] to generate fine masks.
Qualitative results of the “w/o CRF” setting are shown in
Figure 12.

C.4. Effects of High-Frequency Entities

Our method is inferior to predict high-frequency entities.
In web image-text datasets, “person” is one of the most
high-frequency entities. We visualize several bad cases in
Figure 14. When person co-exists with other objects, the
model cannot produce segmentation on person. It could
result from the confidence scores of “person” are greatly
lower than other categories. For instance, the image-text
score of “person” class is ∼0.15, while “horse” is ∼0.25.
Our model fails to select “person” in the thresholding post-
processing. It indicates a drawback of CLIP-driven zero-
shot semantic segmentation, i.e., high-frequency entities
cannot play an important role in image-text contrasting, re-
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Figure 14. Bad cases on the high-frequency entity “person”.

sulting in low image-text similarity score on classes con-
cerning high-frequency entities.
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[8] Philipp Krähenbühl and Vladlen Koltun. Efficient inference
in fully connected crfs with gaussian edge potentials. In
NeurIPS, 2011.

[9] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays,
Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence
Zitnick. Microsoft COCO: Common objects in context. In
ECCV, 2014.

[10] Ilya Loshchilov and Frank Hutter. Decoupled weight decay
regularization. In ICLR, 2019.

[11] Bryan A. Plummer, Liwei Wang, Christopher M. Cervantes,
Juan C. Caicedo, J. Hockenmaier, and Svetlana Lazebnik.
Flickr30k entities: Collecting region-to-phrase correspon-
dences for richer image-to-sentence models. IJCV, 2015.

[12] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen
Krueger, and Ilya Sutskever. Learning transferable visual
models from natural language supervision. In ICML, 2021.

[13] Jiarui Xu, Shalini De Mello, Sifei Liu, Wonmin Byeon,
Thomas Breuel, Jan Kautz, and Xiaolong Wang. GroupViT:
Semantic segmentation emerges from text supervision. In
CVPR, 2022.

[14] Yang You, Igor Gitman, and Boris Ginsburg. Large batch
training of convolutional networks. arXiv:1708.03888,
2017.


	. Implementation Details
	. Implementation Details of Training
	. Implementation Details of Evaluation

	. Additional Experiments
	. Image-Text Retrieval
	. Zero-shot Classification
	. Linear Classification
	. Ablation Details

	. Visualizations
	. Similarity Maps
	. Segmentation Results
	. Effects of CRF
	. Effects of High-Frequency Entities


