
Appendices
A. Dataset

A.1. Dataset Description

Our dataset is built from the in-the-wild talking videos
of four persons with various poses. The dataset contains
high-quality 3D holistic body mesh annotations that are re-
constructed from video clips of 26.9 hours in total. Each clip
is less than 10 seconds. Fig. 7 illustrates the distributions of
video durations from different characters.

Figure 7. The distribution of the number of short clips for each
character (0-10 seconds) of different speakers.

A.2. Good Practices for Improving p-GT

Preliminary. The 3D holistic body meshes consist of face,
hands, and body, which is achieved by adopting SMPL-X
[47]. It uses standard vertex-based linear blend skinning
with learned corrective blend shapes and has N = 10475
vertices and K = 67 joints. Let W be the linear blend skin-
ning function, the predicted mesh vertices can be represented
as v = W (θ, ψ, β) ∈ RN×3. Let V = {vt|vt ∈ RN×3}Tt=1

and J = {jt|jt ∈ R67}Tt=1 be the temporal sequence of
mesh vertices and its 3D joint locations regressed from a
linear regressor. We also denote P b = {pbt |pbt ∈ R32}Tt=1

and Ph = {pht |pht ∈ R24}Tt=1 as the temporal sequence of
the coefficients of the latent space of VPoser and low dimen-
sional pose space after principal component analysis (PCA)
for the body and hands respectively. For time interval [1 : t],
V1:t = (v1, ..., vt), J1:t = (j1, ..., jt), P b

1:t = (pb1, ..., p
b
t)

and Ph
1:t = (ph1 , ..., p

h
t ) represent segments of mesh vertices,

3D joints, body pose, and hand pose, respectively. Note that
we use a fixed pose (sitting or standing) for the invisible
lower body. And in a temporal sequence of the p-GT holistic
motions mi, at each time step t, the facial representation
mf

t = [θft , ψt] ∈ R103 is a concatenation of jaw orienta-
tion and expression, and the body and hand motions are
respectively represented by their poses mb

t = θbt ∈ R63 and
mh

t = θht ∈ R90.

Initialization. Since optimization-based methods are of-
ten slow and sensitive to the initialization. In contrast,
regression-based methods tend to give a reasonable, but
not well pixel-aligned results. Therefore, we use the results
from PIXIE [22] and PyMAF-X [69] to initialize the pa-
rameters of body and hand pose, respectively. Results from
DECA [23] are used to initialize the parameters of jaw pose
and facial expression.

Data terms. We extend the data term by incorporating
body silhouettes, facial landmarks, facial shapes, and facial
details.

Firstly, to deal with the imperfect 2D landmarks by Open-
pose [10], we introduce the silhouette constraint to encour-
age the rendered SMPL-X body to be inside the human body
mask. Ground-truth person segmentations are expensive to
obtain for in-the-wild datasets. Hence, we employ an off-
the-shelf segmentation model, Deeplab V3 [12] to generate
p-GT person semantics maskMsil ∈ RT×h×w, where H and
W are the height and width of the input image. Pytorch3D is
used as the differential renderer to process the rendered pix-
els of all mesh triangles, leading to the predicted semantics
mask M̂sil ∈ RT×h×w. The silhouette loss term is given by:

Lsil =
∑

||d(M̂sil)⊙ dedt(g(Msil))||2, (4)

where g(x) =MaxPool(x)− x is a function for detecting
the edge of the binary mask. dedt is a distance function to cal-
culate the smallest Euclidean distance from the background
point to the silhouette boundary.

Secondly, to get a better facial geometry in SMPL-X, we
minimize the difference between the facial shape in SMPL-
X and the reconstructed facial shape from MICA [73]. We
term this as a facial shape objective LFS given by:

LFS = ||Mg1(VSMPL−X)−Mg2(VMICA+ tFS)||2, (5)

where VSMPL−X ∈ RN×3 is the SMPL-X vertices at neu-
tral pose (i.e. θ = 0, ψ = 0). VMICA ∈ R5023×3 is the
MICA shape, and tFS ∈ R3 is the offset of VMICA from
VSMPL−X . Mg1 and Mg2 are functions that maps the orig-
inal mesh vertices of VSMPL−X and VMICA to the corre-
sponding 1787 vertices of frontal face part, respectively.

Thirdly, to get better facial expression, we use Medi-
aPipe [32] to extract 105 of 468 dense 2D facial landmarks
for each image. The loss term LFE is calculated as:

LFE =
∑
t

||U1:t − Û1:t||2, (6)

where U1:t and Ûi are temporal segments of landmarks from
MediaPipe [32] and the 2D projection of the corresponding
3D joints J1:t, respectively.

Lastly, to obtain high-frequency resolution facial details,
we employ face expression tracking to monocular RGB



Figure 8. The architecture of SHOW. It consists of initialization and optimization modules. Specifically, given an input the image sequence,
firstly, PIXIE [22], DECA [17] and PyMAF-X [69] are used to initialize the parameters of SMPL-X. Secondly, the optimization routine
incorporates body silhouettes from DeepLab V3 [12], facial landmarks from MediaPipe [32], and facial shapes from MICA [73]. Then, it
uses a photometric loss between the rendered faces and the input image to better capture facial details. Lastly, SHOW outputs the final
results.

images in a self-supervised fashion. Specially, we follow
[23, 73] to reconstruct the face jointly with an illumination
model based on spherical harmonics and a Lambertian mate-
rial assumption:

LFR =
∑
t

||Ir(MS2F (V1:t))− Ihead1:t ||2, (7)

where MS2F is a function that selects the head part of V1:t.
Ir is the forward pass of differential rendering. Ihead1:t is the
cropped head image from input image. Note that we choose
different scales (e.g. 256, 512, 1024) for different stages in
the optimization procedure.

Regularization. Different regularization terms in SMPLify-
X prevent the reconstruction of unrealistic bodies. To derive
more reasonable regularization terms, we explicitly take the
video prior into account.

To reduce the jittery results caused by the noisy 2D de-
tected keypoints, we introduce a smooth term for body and
motion poses (P b and Ph). They are defined as:

Mb =
∑
t

||P b
2:t − P b

1:t−1||2, (8)

Mh =
∑
t

||Ph
2:t − Ph

1:t−1||2. (9)

We also add constant-velocity smooth term Mj on J :

Mj =
∑
t

||J3:t + J1:t−3 − 2× J2:t−2||2, (10)

Furthermore, to prevent the inter-penetration of two
hands, we use Collision Penalizer [47] and denote this loss
term as Lpen.

Training Losses. The final objective function is given by:

E(β, {θ}Tt=1, {ψ}Tt=1, ψlight, ψlbs, tFS) =

T∑
t=1

(ESMPLify−X(t))+λFELFE+λFSLFS+λFRLFR+

λmbMb + λmhMh + λmjMj + λsilLsil + λpenLpen,
(11)

where ψlight ∈ R3 is the spherical harmonic coefficients
representing the environmental illumination. ψlbs ∈ R128

is the linear blend skinning parameters of albedo model.
ESMPLify−X(t) is the basic prior on single image as de-
scribe in [47]. Weights λ steer the influence of each term.

Optimization. Following [47], we adopt the Limited-
memory BFGS [46] with strong wolfe line search for opti-
mization. An iterative fitting routine is used for better fitting.
With proper initialization, we minimize the objective func-
tion using a five-stage fitting procedure to avoid the local
minima trap and reduce the optimization time. The learning
rate is set to 1. As the required GPU memory increases
dramatically with the image batch size for neural rendering,
we use a mini-batch of 50 on NVIDIA Tesla V100.

B. Network Architecture Details
B.1. Face Generator

The raw audio input is normalized to zero mean and unit
variance, and then is fed to encoder, which consists of an
audio feature extractor, a transformer encoder, and a full-
connected layer. The audio feature extractor is followed
by an interpolation operation, in which the audio feature is
re-sampled into target frames. For the decoder, it comprises
six temporal convolution layers (with a kernel size, stride
and padding of 3, 1 and 1 respectively) and a full-connected
layer. Each temporal convolution layer is followed by layer
normalization [6] and a Leaky RELU activation function
[43]. We adopt SGD with momentum and a learning rate of



Figure 9. The 3D holistic body reconstructions of four subjects from SMPLify-X, PIXIE, PyMAF-X, and ours. Compared to other methods,
ours produces more accurate and stable results with details.

0.001 as the optimizer. The face generator is trained with
batchsize of 1 for 100 epochs, in which each batch contains
a full-length audio and corresponding facial motions.

B.2. Body and Hand Generator

VQ-VAEs Details. The VQ-VAE takes body or hand mo-
tions as input. The encoder of each VQ-VAE is composed
of three residual layers, which includes three temporal con-
volution layers (with a kernel size, stride and padding of
3, 1 and 1 respectively) followed by batch normalization
[28] and a Leaky RELU activation function [43]. The en-
coder is interleaved with a temporal convolution layer with
a kernel size, stride and padding of 4, 2 and 1 respectively
after every residual layer except the last so that the temporal
window size w is equal to 4. On the top of the encoder, a
full-connected layer is added to reduce the dimension before
quantization. The decoder is symmetric with the encoder.
We adopt Adam with β1 = 0.9, β2 = 0.999 and a learning
rate of 0.0001 as the optimizer. The commitment loss weight
β is set to 0.25. The VQ-VAEs are trained with a batchsize
of 128 and a sequence length of 88 frames for 100 epochs.

Autoregressive Model Details. The autoregressive model
consists of an audio encoder and a Gated PixelCNN [57].
The audio encoder, which has the same structure as the
VQ-VAE encoder, takes MFCC feature as input. Then we
concatenate the output of the audio encoder and VQ-VAEs
encoders and feed it to the Gated PixelCNN. The Gated
PixelCNN has 15 gated convolution layers conditioned on
identity, in which the convolution kernel is masked to make
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Figure 10. Holistic body reconstruction compared to Habibie et al.

sure the model cannot read future information. We adopt
Adam with β1 = 0.9, β2 = 0.999 and a learning rate of
0.0001 as the optimizer. The autoregressive model is trained
with a batchsize of 128 and a sequence length of 88 frames
for 100 epochs.

C. More Comparison

Habibie el al. [27] v.s. SHOW. Habibie et al. [27] represent
body, hands, and face separately. The lack of connection
between body and face/hands results in unnatural poses of
the face/hands w.r.t. the body. Fig. 10 a) shows that the hand
and head poses of the body mesh, reconstructed from their
estimated 3D skeleton, are less accurate than ours. Generated
video results are further jittery. In contrast, SHOW generates
more stable and accurate holistic body meshes.

Experimental Results. We compare our method with more
other approaches and more metrics in Tab. 5. Specifically,
We add Frechet Gesture Distance (FGD) [68] to measure the
motion realism and beat consistency (BC) [42] to measure



Method Habibie Audio VAE Audio+Motion VAE Audio2Gesture[40] Ours w/o c-c Ours w/ c-c
FGD ↓ 239.32 121.01 166.65 203.99 147.81 74.88
Variance ↑ 0 0.044 0.176 0.240 0.922 0.821
BC (GT 0.868) 0.948 0.746 0.822 0.943 0.851 0.872

Table 5. More experimental results.

Figure 11. The application with SMPLpix to create photo-realistic
neural avatars. Top row (input): the mesh vertices provided by
TalkSHOW and their colors projected onto the image plane, bottom
row: rendered output.

the alignment between the generated body motion and input
audio, and compare with another audio-to-body motion base-
line [40]. Our method outperforms the baselines in all these
metrics and generates more diverse body motions, which are
better aligned with the input audio.

D. Application
One application of our speech-to-motion generation is

to create the photo-realistic neural avatars through neural
renderers such as SMPLpix [49]. Given the mesh vertices
provided by TalkSHOW and their colors, we first project
them onto the image plane. Then, with the projected mesh
vertices, SMPLpix allows us to efficiently synthesise photo-
realistic images of humans. As TalkSHOW can produce
continuous yet diverse motions, integrating SMPLpix with
our motion generation framework enables us generate human
avatars under different poses (see Fig. 11), leading to end-to-
end photo-realistic video generation.

E. Discussions

Reconstruction. SHOW is based on SMPLify-X whose su-
pervision signal is obtained from 2D keypoint reprojection.
Thus, it is sensitive to severe hand shape deformation and
heavy occlusion. A future direction would be to leverage ad-
vanced hand model with rich shape and pose space. Besides,

SHOW can only handle static camera cases currently. In the
future, we plan to extend it to moving cameras.

Audio2motion. While we have demonstrated that Talk-
SHOW can generate realistic, coherent, and diverse holistic
body motion with facial expression, body, and hand motions,
it is subject to a limitation that can be addressed in the future.
For the face generator, we mainly focus on facial motion (e.g.
lip motion) and might not handle the very complex facial
movements caused by emotions. In the future, we plan to
extend to model this sort of part.

F. Risks and Potential Misuse
This work is intended for studying the translation from

human speech to holistic body motion, helping building vir-
tual agents to behave realistically and interact with listeners
meaningfully. Since our techniques can generate a realistic
and diverse 3D talking humans from audio, there is a risk
that such technique could be potentially misused for fake
video generation. For instance, a fake speech could be used
to construct highly realistic 3D holistic body motion while
it never happened. Thus, we should use such technology
responsibly and carefully. We hope to raise the public’s
awareness about a safe use of such technology.


