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1. Encoding for Other Information
Following the approach to encode operation types and

topology information, other information necessary for
downstream tasks can be similarly further encoded. Then
each token is generated by concatenating the encoding of
each part.

In the experiments on NNLQP [6], the architectures are
whole deep neural networks(e.g. EfficientNet [11]), some
of which may have more than 200 layers. In order to learn
more complete and detailed representations of these large
networks, in addition to the operation type and topology
structure, we also encode the attribute parameters and the
output tensor shape of the each operation. The specific con-
tents of these two types of information are shown in Tab. 1.
The operation attributes here refer to the parameters speci-
fied when defining an operation layer, such as kernel size,
number of groups, and so on. Once the shape of the input
data is determined, the output shape of each layer can be
inferred. The output shape has a maximum of 4 parame-
ters. However, after some layers (such as the flatted layer),
it may only have 2 values, that is, the output is a batch of
vectors rather than feature maps. For each node(i.e. layer),
we use our real number tokenizer to map the node’s infor-
mation (operation type, self position, source nodes position,
operation attributes, output shape) to vectors of length 32.
The code of the node, which has a length of 480, is obtained
by concatenating these vectors. When a layer node does not
have some attributes or its output has less than 4 values, we
pad zeros into its code to ensure uniform encoding lengths
for all nodes. Considering that static properties (batch size,
FLOPs, parameters, and memory access) have an impact on
inference time, they are used for latency prediction together
with the output of multi-stage fusion transformer.

2. Implementation details
2.1. Setup on NAS-Bench-101

On NAS-Bench-101 [13], the setup of all experiments
goes as follows. We employ AdamW [8] optimizer with de-
fault momentum parameters to train our NAR-Former. Af-
ter the first 10% iteration warm-up, the learning rate linearly
decays from initial value 0.0001 to 0. The batch size and
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Table 1. Details of other encoded information.

number of epochs are set to 256 and 6000, respectively. For
layer normalization and biases in all layers, weight decay is
set to 0 and for other regular layers is 0.01. The dropout rate
is 0.1. Inspired by ConvNeXt [7], we employ the Exponen-
tial Moving Average(EMA) [9] to alleviates overfitting.

NAS-Bench-101 provides the performance of each ar-
chitecture on CIFAR-10 [5]. For the calculation of
Kendall’s Tau [10], the accuracy of each input architecture
on the validation set is used as ground truth during training
and validation, while the accuracy of each input architec-
ture on the test set is used as ground truth during testing.
We calculate the metrics on the test set respectively using
the model of the last epoch, the best model, and the best
EMA model on the validation set, and the highest one is
reported.

2.2. Setup on NAS-Bench-201

On NAS-Bench-201 [4], the setup of all experiments
goes as follows. AdamW [8] optimizer with default mo-
mentum parameters is used to train our NAR-Former. The
learning rate follows a schedule that decays linearly to 0.
The initial learning rate is 0.0001 reached by warming up
with 10% iteration steps. The batch size and number of
epochs are set to 256 and 4000, respectively. The weight
decay is set to 0 for layer normalization and bias of all lay-
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ers and 0.01 for other regular layers. The dropout rate is 0.1.
We also use the Exponential Moving Average(EMA) [9] in
experiments in this part.

NAS-Bench-201 contains the performance of each ar-
chitecture on three different datasets: CIFAR-10, CIFAR-
100 [5], and ImageNet-16-20 [2]. We only use the results
on CIFAR-10 in our experiments. We follow the way in
Sec. 2.1 to assign ground truth and report results.

2.3. Setup of Neural Architecture Search on DARTS

In this experiment, the structure of NAR-Former is the
same as that used in experiments on NAS-Bench-101. In
each round of evolution, the optimizer, weight decay strat-
egy, dropout rate, and the change rules of the learning rate
for predictor training are the same as those in Sec. 2.1, but
the initial learning rate, batch size and the number of epochs
are fixed to 0.001, 32, and 1000, respectively. The trained
predictor was used to select the 10 most accurate architec-
tures from the mutations.

We evaluate the searched architecture following [12].
The architecture to be evaluated is constructed using the
searched normal cell and reduction cell and has 20 cells and
36 initial channels. This architecture then is trained from
scratch on CIFAR-10 using a momentum SGD optimizer.
The number of epochs is 600, and the batch size is set to
96. Additional training enhancements including cutout [3],
drop path, and auxiliary towers are used.

2.4. Setup of Neural Architecture Search on Mo-
bileNet Space

We use the same search procedures and settings in OFA
[1] to conduct the experiment of searching neural architec-
tures on MobileNet space. The only difference is that we
predict the accuracy of architecture using our NAR-Former,
rather than the predictor adopted by OFA [1]. The architec-
ture encoding is obtained through the tokenizer introduced
in Sec. 3.2 of the paper, which has been slightly modified
based on the MobileNet space. For each node token of the
input architecture, we only encode the kernel size, width
expansion ratio, self position of the current block. Instead
of encoding the depth of the input architecture, we encode
the size of the input image following the way of generating
depth token. The structure of representation learning and
attribute prediction is consistent with the NAR-Former we
introduced in the paper.
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