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In this supplementary material, we introduce additional
experiments, discussions, details of relighting video demos,
Android app implementation, the Relit dataset, as well as
network and training details.

1. Mathematical proofs of Theorem 1
Theorem 1. Optimal rank-one approximation. By
SVD, R = UΣV T , Σ = diag(σ1, σ2, ...σk), Σ′ =
diag(σ1, 0, ...), R̄ = UΣ′V T is the optimal rank-one ap-
proximation for R, which meets:

||R̄−R||2F = min
b∈RN,c∈Rd

||bcT −R||2F , (1)

where || · ||F denotes the Frobenius norm of a matrix.

Proof. The objective in (1) can be written as following:

||bcT −R||2F =

d∑
i=1

||ci · b− ri||22. (2)

To minimize ||ci ·b−ri||22 while b is a fixed unit vector, ci ·b
should be the projection of ri onto b (ri is the ith column
of R). It is equivalent to c = bTR. Then we reduce the
optimization problem (1) as:

min
b∈RN,||b||2=1

||bbTR−R||2F . (3)

Since b is a unit vector and V are orthonormal, we can
rewrite ||bbTR||2F as:

||bbTR||2F = ||bTR||22 = ||bTUΣV T ||22

= ||bTUΣ||22 =

k∑
i=1

(bTui)
2σ2

i .
(4)

By Pythagorean Theorem, and ||R||2F ≥
∑n

i=1||cib||2, op-
timization problem (3) is equivalent to maximizing (4)).
Since

∑k
i=1(b

Tui)
2 = 1 and {σi} are descending, Equa-

tion (4) is maximized when (bTu1)
2 = 1. It can be ac-

complished by setting b = u1 and c = σ1v
T
1 , i.e., R̄ =

*Co-first authors.
†Corresponding authors: kevin.kai.xu@gmail.com.

UΣ′V T = bcT is the optimal rank 1 approximation for
R.

2. Additional experiments
2.1. Evaluation of Light-Net

To evaluate the performance of Light-Net, we randomly
sampled a testing set of 200 images from LIME [9]. It is
a synthetic dataset of Bigbird [13] and ShapeNet [2] ob-
jects with ground truth normal, albedo, and shading. We
use lighting coefficients predicted by Light-Net to render
shading with ground truth normal maps. By comparing the
rendered shading and ground truths, we can evaluate the ac-
curacy of the estimated lighting coefficients. For quanti-
tative evaluation, we adopt three metrics, including MSE,
scale-invariant MSE, and SSIM. The results are in Table 1.
We compare to two ablations from Table 1-2 in the main pa-
per, which are “loss+” and “without joint training”. We can
see that for lighting evaluation, our final model produces
the lowest MSE and scale-invariant MSE, and comparable
SSIM to “without joint training”. From visual examples in
Figure 1, our model renders similar shading with ground
truths, while the predicted lighting is more directional than
ground truths.

Although part of the LIME dataset is used in the pre-
training of Normal-Net, here we only use Light-Net for this
evaluation, for which the dataset is completely unseen.

Table 1. Quantitative evaluation of Light-Net.

The final model loss+ w/o joint training
MSE ↓ 0.0403 0.0452 0.0414

SMSE ↓ 0.0336 0.0368 0.0345
SSIM ↑ 0.8684 0.8652 0.8686

2.2. Evaluation of Spec-Net

To evaluate the performance of specular highlight extrac-
tion of Spec-Net, we compare with several prior methods
on a real-image dataset from [16]. As shown in Table 2,
Spec-Net outperforms other methods in both SMSE and
DSSIM. Visual comparisons are in Figure 2. On real im-
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Figure 1. Visual examples of Light-Net evaluation. We render
shading from ground truth normal and predicted lighting, and pro-
duce close results with ground truth shading.

Table 2. Quantitative evaluation of specular highlight separation
on real images.

[11] [12] [15] Ours
MSE 0.0334 0.0305 0.0334 0.0148

DSSIM 0.1745 0.2087 0.1743 0.1500

Input [27] [32] [38]                   Ours Ground truths

Figure 2. Qualitative comparisons on four data from real-
image specularity separation dataset from [16], captured by cross-
polarization. From left to right, there are input images and dif-
fuse components after removing specular highlights by [11,12,15],
ours, and ground truths.

ages where highlights are strong, and highlight regions are
saturated, most methods tend to over-extract specular high-
lights, while Spec-Net performs well due to the training on
a large scale of real images.

2.3. Additional results of experiments in the main
paper

Due to the page limit of the main paper, we show ad-
ditional results for experiments in the main paper. In Fig-
ure 3, there are visual comparisons of two data from MIT
intrinsics [4]. Here all methods are not fine-tuned on MIT
dataset. Here SIRFS [1] and DI [10] are supervised meth-
ods. Yi [16] and ours are self-supervised, while they pre-
dict shading by a Shading-Net, and our shading is rendered
from predicted normal and lighting. In Figure 5, there are
visual comparisons of normal estimation to several state-of-
the-art methods, for the quantitative evaluation in Table 2 of
the main paper, on unseen data from Janner et al. [5]. Our
method produces more details in normal maps. In Figure 4,
we compare with a full relighting pipeline RelightNet [18]
on real object insertion.

We provide supplementary results of Table 3 and Fig-
ure 6 of the main paper in Figure 9. Our diffuse and non-
Lambertian rendering layers produce similar results with
GT renderers. GT renderers are implemented by Monte-
Carlo sampling of point lights following the Blinn-Phong
model.

2.4. More discussions

Multi-view stereo as normal supervision. Previous
method [19] uses multi-view stereo to reconstruct normal
maps on outdoor building images in MegaDepth dataset [6],
where ground truth depth maps are also available. Features
on outdoor buildings are rich, which are suitable for multi-
view stereo to reconstruction.

For object images, we explored similar approaches and
found it not working for our scenarios. we use a reconstruc-
tion pipeline of adopting VisualSFM [14] to reconstruct
sparse point clouds, then PMVS2 [3] to further reconstruct
dense point clouds. Applying the pipeline needs multi-view
images as inputs, which would introduce a heavy workload
for capturing multi-view images for all objects. For demon-
stration, we capture additional multi-view images and test
the pipeline on several objects. For each object, we capture
about 50 multi-view images as inputs. From the results,
we find the point clouds are very sparse due to lack of fea-
tures. A example is shown in Figure 6, textureless regions
are quite common on natural objects, where the features are
sparse, and reconstruction results have many holes on the
resulting dense point clouds. For some other object, due to
the lack of features, VisualSFM even fails to reconstruct a
initial point cloud. Thus, adopting SFM and MVS to recon-
struct geometry is not an option for our cases.
Using median or mean reflectance vs. the singular
reflectance. One may wonder whether using median or
mean images of reflectance predictions in one batch will
have similar results with our low-rank constraint. Firstly,
losses between the median or mean reflectance of one batch
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Figure 3. Qualitative comparisons on two data from MIT Intrinsics. Odd rows are input images, albedos and even rows are shadings. The
normal predicted by our method is shown at right.

Input Ours RelightNet Naïve insertion

Figure 4. Qualitative comparisons on object insertion by ours, Re-
lightNet [18] and naive insertion without relighting.

and predicted reflectance are not scale-invariant. Secondly,
the median image is not differentiable. Thirdly, we perform
a large amount of testing on our Relit dataset and found that
singular reflectance is more robust to shadows, intensity
saturations and uneven lighting, which are common cases
in natural images. Some visual comparisons are shown in
Figure 7, we can see that mean image may generate incor-
rect reflectance in some regions due to the above reasons
while dominant singular reflectance generates much more
reasonable reflectance maps. It is because SVD solves the
dominant direction of reflectance maps, better than naive
averaging. Note that we show cases on input images in
Figure 7 because at the beginning of joint training, the
network initializes from predicting reflectance the same as
input images. We can see that using singular reflectance is
much better visually, with convergence proven.

Comparisons to other low-rank losses. As mentioned in
the main paper, our definition of low-rank constraint is more
robust and easy to converge. We evaluate the robustness of
our low-rank loss with losses from [17] and [16]. Previous
low-rank losses have more than one local optima as men-

10−2 10−4 10−6 10−8

loss+ (σ2) % % % !

loss* (σ2/σ1) % % % %

Ours ! ! ! !

Table 3. The robustness of different loss formulations. %means
the training degenerates to an invalid shading and !means the
training is converging.

tioned in [16]. Thus they have to use a pretraining phase to
initialize the training, and the learning rates are hand-picked
to make sure the final models converge to the local optima
near the pretraining results. In Table 3, we found the learn-
ing rate has to be tuned carefully. For loss+ in the table, a
learning rate smaller than 10−8 would work. For loss*, we
test learning rates from 10−2 to 10−8, and all cases degener-
ate to predict all-white or all-zero shadings. Setting a small
learning rate also makes the training time much longer. Our
loss has only one global and local optima, and it is promised
to converge, and it does not suffer from degenerating.

Visual comparisons to previous low-rank losses (loss+
and loss*) from [16, 17] are in Figure 8. We can see that
loss+ gives similar results to ours, while albedo by our
method is more smooth in color, and our normal is more ac-
curate from Table 2 in the main paper. Note that here loss+
is trained in a small learning rate of 10−8 to prevent degen-
eration. It also benefits from our large-scale Relit dataset.
However, even by a small learning rate of 10−8, loss* still
degenerates and starts to predict all black albedo maps, as
in Figure 8.

3. Limitations

There are several limitations, as well as future directions
of the proposed method. One limitation is that, cast shad-
ows (visibility) are not considered, which can further nar-
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Figure 5. Normal estimation comparisons with SIRFS [1], SVBRDF [7], InverseRenderNet [19], RelightNet [18]and ShapeAndMaterial [8]
on selected data from Janner et al. [5]. The reference color map can be found in Figure 5 in the main paper, where the red channel is x-axis
pointing right, green channel corresponds to y-channel pointing down, and the blue channel is z-axis pointing out from the image plane.

Figure 6. Object reconstructed by VisualSFM and PMVS2. Se-
lected multi-view image inputs are shown on the left and recon-
structed dense point clouds are on the right.

row the gap between relighting results and reality. Further-
more, parametric models such as Blinn-Phong and Phong
are difficult to model semitransparent and transparent ma-
terials, which are also common in real scenarios. Spherical
harmonics are also limited to model high-frequency light-
ing components. We plan to explore these directions in the
future.

…

…

Selected frames mean median singular

Figure 7. On each row, selected images from one batch are shown
at the left. Corresponding mean image, median image and singular
image are at the right.

4. Relighting demos
On the project page 1, we include many relighting videos

under changing backgrounds. Relit images are inserted to
target scenes to show a seamless AR object insertion effect.
We demonstrate single-object insertion and multi-object in-
sertion where multiple objects are from different input im-
ages. We also demonstrate editing the materials of objects.
Object insertion is quite popular in AR applications, and
most AR Apps simply adopt naive insertion without relight-

1https://renjiaoyi.github.io/relighting/

https://renjiaoyi.github.io/relighting/
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Figure 8. Visual comparison of three low-rank losses on two unseen images. Benefiting from the Relit dataset, loss* produces similar
results while setting a small learning rate.

ing, such as the dancing hotdog in SnapChat, and furniture
in Ikea Place. From the video, we can see our method gen-
erates much better object insertion results than naive inser-
tion, demonstrating the importance of this problem.

Note that the backgrounds are cropped from HDR light-
ing panoramas, after Gamma corrections with γ as 2.2.
Codes for pre-computation of Spherical Harmonic coeffi-
cients, and end-to-end inverse rendering and relighting will
be released on the project page.

5. App implementation
To implement the object relighting app in the Android

mobile system, we convert the network models to Pytorch
Mobile and package them inside the application as assets.
For object photos captured from the camera, an on-device
GrabCut in OpenCV is applied to obtain the object mask.
To ensure acceptable automatic segmentation results, we
require users to capture the objects under a background
of solid colors. For photos loading from memory, the ob-
ject mask is required as an additional input. We can insert
and relight single or multiple objects from different photos
into the same scene, and manipulate the layouts and sizes
through simple dragging, tailored for amateur users.

The application is implemented in Java, using the An-
droid Gradle plugin of version 3.5.0 with several additional
Gradle and Pytorch dependencies. The app demo video is
also on the project page.

6. The Relit dataset
To capture foreground-aligned videos of objects under

changing illuminations, we design an automatic device for
data capture, as shown in Figure 3 in the main paper. The

main part is an electric turntable painted black to avoid
strong reflections. While capturing data, objects and the
camera are fixed on the turntable. The turntable rotates at a
uniform angular velocity of 12.6 rad/s, controlled by a re-
mote to avoid shaking. For each video, the device is rotated
by 360◦ for 50 seconds.

The device is chargeable and portable, enabling us to
capture data under arbitrary scenes easily. The target ob-
ject stays static in the image coordinate system in cap-
tured videos, with changing illuminations and backgrounds.
These foreground-aligned videos can facilitate many tasks,
such as image relighting, segmentation, and inverse render-
ing.

In summary, the Relit dataset consists of 500 videos
for more than 100 objects under different indoor and out-
door lighting. Each video is 50 seconds, resulting in 1500
foreground-aligned frames under various lighting. In to-
tal, the Relit dataset consists of 750K images. In pre-
processing, we segment the mask for one frame of each
video and apply it to all frames to remove the changing
backgrounds. Selected objects are shown in Figure 3 in the
main paper. The objects cover a wide variety of shapes,
materials, and textures.

Some foreground-aligned images in Relit dataset are
shown in Figure 11-14. These are selected frames from
some videos after preprocessing. Sample videos from the
dataset are shown on the project page, where the device is
very stable, making sure the foreground objects are staying
well-aligned among all frames. The dataset is released on
the project page.
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Figure 9. Quantitative evaluation on relighting with and without specularity. RelightNet [18] can only provide diffuse relighting. Baseline*
denotes the images under the original lighting.



7. Network structure and training details
Normal-Net and Light-Net are the only two learnable

modules in our diffuse pipeline, and an optional specular
branch may be used depending on the materials of target ob-
jects. The structures are in Figure 10. Spec-Net shares the
same structure with [16]. The network to regress specular
reflectance Sp and smoothness α shares the same structure
of Light-Net, while changing the output to 4 channels (3 for
specular reflectance and 1 for smoothness).

In pretraining of Normal-Net, 50K synthetic images
from LIME [9] are used for training. The learning rate is
10−4 without further adjustments. The training lasts for 50
epochs, by Adam optimizer.

In our joint training, we use the large-scale foreground-
aligned images from Relit dataset. Light-Net is initialized
from scratch and Normal-Net is initialed by the pre-trained
model. The learning rate is 10−6 without further adjust-
ments. Each round of joint training last for 3 epochs, taking
60 minutes per epoch on Tesla P40 GPU. The joint train-
ing process driven by the proposed low-rank loss converges
rapidly, which takes 6 hours in total, thanks to the conver-
gence proven in the main paper.
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Figure 10. (a) Structure of Normal-Net. (b) Structure of Light-Net.



Figure 11. Selected frames from one video in Relit dataset.



Figure 12. Selected frames from one video in Relit dataset.



Figure 13. Selected frames from one video in Relit dataset.



Figure 14. Selected frames from one video in Relit dataset.
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