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1. Algorithm of AGAIN
Our training method is summarized in Algorithm 1.

Algorithm 1 AT with AGAIN
Input: Training Set, Initialized model F , Maximum num-
ber of iterations N
Output: Robust model F

1: for i in Range (0, N) do
2: prob = i/N
3: flag = Random.uniform(0, 1)
4: Generate adversarial examples using PGD-10
5: if flag < prob then
6: Training model using AGAIN
7: else
8: Training model using original AT
9: end if

10: end for

2. Theoretical Motivation for Robust General-
ization

We analyze the reasons why our proposed approach
can improve robust generalization from two perspectives:
model overfitting and the number of features learned by the
model.

Ilyas et al. [4] argue that the features utilized by DNNs
can be divided into robust features and non-robust features.

*Zhen Xiao and Kelu Yao are the corresponding authors.

Robust features are a small span of features that are inter-
pretable to the human eye and AT usually makes the model
focus on some specific visual spans, causing the model
to ignore other features and making the attribution span
smaller [1]. This is also consistent with our observations.
In addition, adversarial examples generated under AT are
not sufficient to cover all cases, which leads to insufficient
training data. Therefore it can lead to model overfitting in
this case [7].

Another intuitive explanation is that the key to a suc-
cessful attack by an attacker is to corrupt the features that
the model focuses on [9]. Our approach enables the model
to use as many robust features as possible in its inference
by enlarging the robust attribution span. Thus, if the model
uses more robust features for inference, it is more expensive
for an attacker to successfully attack it. Note that simply
increasing the attribution span does not improve the robust-
ness of the model. We need to expand the span of the robust
features and therefore need to do it under AT. So, we expect
to enlarge the attribution span of the model during AT so
that it can learn richer features and improve generalization.

Next, we demonstrate through theoretical analysis that
the proposed method can alleviate the phenomenon of
model overfitting as well as can enable the model to learn
more features.

We define A as the output of the second last layer of
the model. The weight matrix of the last layer (fully con-
nected layer) in the model as W. The true label y in W
corresponds to a weight of Wy , and the fake label y′ in W

corresponds to a weight of Wy′
; S(pi) = exp(pi)∑K

j=0 exp(pj)
is

1



softmax.
Theorem 1. Define F (·) is a multi-classifier, when using

Eq. (7) in main text to train F (·), the loss function can be
defined as

L = LCE

(
S
(
αATWy + (1− α)ATWy′

)
, y
)
. (1)

Let X = ATWy − ATWy′
. Suppose F (·) is an ideal

robust classifier, L = 0. The gradient of L w.r.t X is
∇XL = 0. We can get the equation as

ATWy −ATWy′
=

log

α
[
1 +

∑K−2
j ̸=y,j ̸=y′ exp

(
ATWj −ATWy′

)]
1− α

 ,

(2)

The detailed proof is presented in the Appendix. The
following properties can be obtained from Theorem 1:

1). When α tends to 1, the model learns only the features
associated with the correct class and ATWy −ATWy′

=
∞. This indicates that during training, the model learns in
the direction of infinitely increasing the logit difference be-
tween the correct and incorrect labels of the prediction, and
too large a logit difference makes the model lack adaptabil-
ity and overconfidence in the prediction [8]. And due to
the existence of some regularization methods during model
training, the output of logit is hardly infinity [3].

We analyze from the perspective of the number of fea-
tures learned from the model. When considering the en-
tire dataset, assuming that the dataset has K categories,
then ∀i, j ∈ K and i ̸= j, it is necessary to satisfy
ATWy − ATWy′

= ∞, that is, Wy − Wy′
= ∞. If

W can satisfy the above condition, then the W will con-
tain multiple invalid values that tend to infinity. In other
words, the number of valid values used in the final calcu-
lation of the prediction probability becomes less when the
neural network is inferred, which affects the generalization
of the model.

2). When α ∈ [0.5, 1), ATWy −ATWy′
= C, where

C is a constant with respect to α. It can be found that when
using our proposed method for AT, the difference between
logit between correct labels and incorrect labels does not
converge to infinity. With a guaranteed error of a certain
size between the logit values of correct and incorrect labels,
the loss will be small. And there will be more valid values
in W, so the model will use more features in the inference
phase. This can improve the generalization ability of the
model.

3. Proof of Theorem 1
First, let’s recall the notations defined in the previous

section and define some new ones.

A is the output of the second last layer of the model,
where N is the number of features; the weight matrix of the
last layer (fully connected layer) in the model is W, where
K is the number of sample categories; the true label y in
W corresponds to a weight of Wy , and the fake label y′ in
W corresponds to a weight of Wy′

; S(pi) =
exp(pi)∑K

j=0 exp(pj)

is softmax, where pi = ATW i. LCE(S(A
TW),y) =

−
∑K

j=0 yj log(S(A
TWj)) is CrossEntropy Loss, where

yj is the true value of class j. Notice that y is encoded
in one-hot, so only one value is 1 and the rest are 0 in y.
Therefor, when using Eq. 3 in the submission (Line 423) to
train the model, we get

L = − log

 exp
[
αATWy + (1− α)ATWy′

]
∑K

j=0 exp (ATWj)


= −

[
αATWy + (1− α)ATWy′]

+ log

 K∑
j=0

exp
(
ATWj

)
= −α

(
ATWy −ATWy′)

+ log

 K∑
j=0

exp
(
ATWj

)−ATW y′

= −α
(
ATWy −ATWy′)

+ log

[∑K
j=0 exp

(
ATWj

)
exp

(
ATWy′)

]
.

Let X = ATWy −ATWy′
, we can get

L = −αX+

log

1 +

K−2∑
j ̸=y,j ̸=y′

exp
(
ATWj −ATWy′)

+ exp (X)

 .

Let 1 +
∑K−2

j ̸=y,j ̸=y′ exp
(
ATWj −ATWy′

)
= c, the

gradient of L w.r.t X is

∇XL = −α+
exp(X)

c+ exp (X)
.

Suppose F (·) is an ideal robust classifier, L = 0. The
gradient of L w.r.t X is ∇XL = 0. We can get the equation
as

− α+
exp(X)

c+ exp (X)
= 0

=⇒ exp(X) = αc+ α exp (X)

=⇒ X = log
αc

1− α

=⇒ ATWy −ATWy′
=

log

α
[
1 +

∑K−2
j ̸=y,j ̸=y′ exp

(
ATWj −ATWy′

)]
1− α

 .



(a) AGAIN (d) Original image(b) W/O HFF (c) Standard training

Figure 1. Use Smoothgrad to visualize the features learned by the model.
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Figure 2. A visual illustration of attribution span.

Table 1. The average ASC values of ResNet-18 under CIFAR-10
dataset with different training methods.

Dataset Training method Average ASC

CIFAR-10
Standard 54.86%
PGD-AT 51.80%
AGAIN 53.54%

4. More Experimental Result

4.1. Hyper-parameter Selection.

The hyperparameter α controls the ratio between true la-
bels and fake labels. The larger α is, the more attention

the model pays to the features corresponding to true label.
When α = 1, only the features related to the true label are
enhanced; The smaller α is, the more attention the model
pays to the corresponding features of fake label, and when
α = 0, only the corresponding features of fake label are en-
hanced. We chose different parameters α and conducted ex-
periments using ResNet-18 [2] on the CIFAR-10 dataset [5]
to determine the best hyperparameter α. The experimen-
tal results are shown in Figure 4. When α = 0 or α = 1, it
means that the model focuses only on the feature span under
fake labels and those under true labels, respectively. From
the experimental results, we can see that when α = 0.6 is
the best result. Therefore, we set α to 0.6 during experi-



Table 2. The number of valid values in the parameter weights W of the fully connected layer.

method
class

0 1 2 3 4 5 6 7 8 9 Average

w/ AGAIN 302 268 332 319 330 326 318 302 296 287 308
w/o AGAIN 269 302 236 265 259 274 258 274 288 298 272.3

(a) AT w/ AGAIN (b) AT w/o AGAIN

Figure 3. Visualization of the weights of the fully connected layers (where red indicates that the value at this position is a valid value, and
white indicates an invalid value).

ments to ensure that the feature span corresponding to the
true labels dominate, while also allowing the model to learn
other feature span.
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Figure 4. Effect of hyperparameter α on experimental results.

4.2. Impact of HFF on the Model

To verify the effect of HFF on the model, we visualize
the inference process using Smooth Grad [6], and the exper-
imental results are shown in Figure 1. From the results, it
can be seen that the model trained with the proposed method
is able to pay more attention to the structural information of
the data than the model under standard training and the ro-
bust model without HFF (W/O HFF), which improves the
ability to resist the adversarial examples. The experimental
results verify the effectiveness of our proposed method.

4.3. Analysis of the Model’s Attribution Span

We train the ResNet-18 model on the CIFAR-10 dataset
using the standard training, PGD-AT and the proposed
method, respectively. We visualize the attribution span for
each of the three models and calculated the ASC values.
The experimental results are shown in Figure 2 and Table
1. From the experimental results, it can be seen that our
method effectively enlarges the attribution region of the ro-
bust model. This also verifies our proposed hypothesis.

4.4. Number of Valid Values in Weights

We train the ResNet-18 model using the proposed
method and the traditional AT, respectively, and extract the
weight matrix W ∈ R512×10 in the linear classification
layer. When the value of an element in W is greater than
the mean, we consider the value to be a valid value. We vi-
sualize the final result, and the experimental result is shown
in Figure 3 and Table 2. From the experimental results, it
can be seen that most of the classes have more valid val-
ues for the weights when trained with the proposed method
compared to the traditional AT. The model trained with the
proposed method has an average of 308 valid values in the
weights of each class. The model trained using traditional
AT has an average of 272.3 valid values in the weights of
each class. This indicates that the model trained using the
proposed method uses more feature values in the inference
process, thus expanding the attribution span of the model.
This verifies the correctness of our proposed method.
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