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1. Detailed networks and experiment settings

1.1. Network architecture

As illustrated in Fig. 1, we show the difference between
our networks and the NeRF backbone network. NeRF [9],
Mip-NeRF [1], and the ’NeRF MLP’ of Mip-NeRF 360 [2]
all share the same architecture except the width of fully-
connected layers as shown in Fig. 1a. For NeRF and Mip-
NeRF, the hyperparameters for layer width are {w1 =
256, w2 = 256, w3 = 128}, and for Mip-NeRF 360 they
are {w1 = 1024, w2 = 256, w3 = 128}. We use γ(·) to
uniformly represent the positional encoding function, as we
only modify the output part of the networks and the posi-
tional encoding follows the original methods. Please refer
to the original papers for more details about the positional
encoding function.

As in Fig. 1b, we only change the output part of NeRF
backbones. For the density branch that outputs a single den-
sity σ, we replace it with one that outputs K densities {σk}.
And for the color branch that outputs a single color vector c,
we replace it with one that outputs K feature vectors {fk}
of dimension d. K and d are hyperparameters for the num-
ber of sub-spaces and the dimension of the feature fields,
respectively. Besides, we change the activation function of
the color branch from Sigmoid to ReLU.

Most NeRF-based methods use volumetric rendering to
accumulate the color c and the density σ along the ray to get
the estimated color C for each pixel. Instead, we perform
volumetric rendering for each pair of densities {σk} and
features {fk} along the ray and get K accumulated features
{Fk}. Then we use two additional simple MLPs to decode
and compose the final RGB information. As in Fig. 1c, the
MLPs consist of two fully-connected layers with widths d
and h. The Gate MLP uses the Softmax activation function
to get the composition weights {wk}, while the Decoder
MLP uses the Sigmoid activation function to get the colors
{Ck} of each sub-space.

As illustrated above, our multi-space module consists

*Bo Ren is the corresponding author.
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(a) NeRF backbone architecture.
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(b) Multi-Space NeRF architecture.
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(c) The architectures of Decoder MLP and Gate MLP.

Figure 1. NeRF backbone architecture and our model architec-
tures. We denote fully-connected layers as the blue layers in the
figure. We use different colors to represent different activation
functions, i.e., yellow for ReLU, green for Sigmoid, and black for
Softmax.
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of two simple MLPs and the output part of NeRF back-
bones. Thus we can scale our module with hyperparam-
eters {K, d, h}. For NeRF and Mip-NeRF related ex-
periments, we construct MS-NeRFS and MS-Mip-NeRFS

with {K = 6, d = 24, h = 24}; similarly, MS-NeRFM

and MS-Mip-NeRFM with {K = 6, d = 48, h = 48},
and MS-NeRFB and MS-Mip-NeRFB with {K = 8, d =
64, h = 64}. Besides, we construct MS-Mip-NeRF 360
with {K = 8, d = 32, h = 64}. To fairly compare
with NeRFReN [5], we also construct MS-NeRFT with
{K = 2, d = 128, h = 128} based on NeRF.

Details about the importance sampling. To aggre-
gate colors {ci} along the rays using densities {σi}, NeRF-
based methods calculate the contribution of each point to
the estimated pixel color as follows:

Ii = Ti(1− exp(−σiδi)) (1)

where Ti = exp(−
∑i−1

j=1 σjδj), δi = ti − ti−1, and ti rep-
resents the distance between the camera and the i-th sam-
ple point. Most NeRF-based methods require importance
sampling along the rays where there are higher color contri-
butions Ii accumulated. However, in our implementation,
there are K parallel color contributions {Iki } at each sam-
ple point. To perform the importance sampling, we use the
weights {wk} of each sub-space to aggregate color contri-
butions at each point as the one for the importance sam-
pling, which is:

Ii =

K∑
j=1

wj
i I

j
i (2)

1.2. Training details

NeRF-based experiments. We follow the original set-
tings from [9] with a few changes. We re-implement NeRF
using PyTorch [11] and PyTorch Lightning [4] and borrow
some code from [15]. We use the Adam optimizer [6] and
exponentially decay the learning rate from 5e-4 to 7e-5 with
β1 = 0.9, β2 = 0.999, and ϵ = 1e−8. For all scenes and all
experiments, we use 1024 rays per batch, and train 2e5 iter-
ations with Nc = 64 sampled points for the coarse network
and Nf = 128 sampled points for the fine network.

Mip-NeRF-based and Mip-NeRF 360-based experi-
ments. We implement our Mip-NeRF [1] based methods on
top of the official implementation1 and implement our Mip-
NeRF 360 [2] based method on top of [10]. We follow
most training settings, except that we train 2e5 iterations
with a batch of 1024 rays.

Ref-NeRF. We also use the official code [10] to train
Ref-NeRF [13], and similarly, we follow most default set-
tings, except 2e5 iterations and a batch size of 1024 for
training.

1https://github.com/google/mipnerf
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Figure 2. Illustration of the camera path in our synthetic dataset.

NeRFReN. We compare our NeRF-based variant
MS-NeRFT with NeRFReN [5] on the RFFR dataset, and
we re-train this method using the official code2. Similarly,
we follow most provided settings, except that the number
of used masks for reflective surfaces is zero for fair com-
parisons, as our methods require no masks.

1.3. Evaluation Protocols

We use PSNR, SSIM [14], and LPIPS [16] with the back-
bone of AlexNet [7] for quantitative comparisons. For the
synthetic dataset, we evaluate the methods on the test set.
For the real captured dataset, we sort all images by the
names according to alphabet order and use every 1 of 8 im-
ages as the test images, as done in [8].

2. Additional details of our proposed dataset
2.1. Synthetic part

We use 3D models from BlenderKit3, a community for
sharing 3D models, textures, and others for 3D artworks,
to create scenes for the synthetic dataset. We use the
physically-based path tracer of Blender [3], Cycles, to ren-
der all the scenes, and we fix the height of the camera and
move it around the circle in the scene. We make the camera
look at the central objects and uniformly sample 120 view-
points on the circle to render images as illustrated in Fig. 2,
all at the resolution of 800×800. We randomly select 100 of
the 120 images as the training images, 10 as the validation
images, and 10 as the test images. As in Fig. 5, we visualize
a few images for each scene. In most scenes, there are more
than one mirrors that construct complex light paths, and we
also introduce refractive and transparent materials.

2https://github.com/bennyguo/nerfren
3https://www.blenderkit.com/



2.2. Real captured part

We capture the real dataset using a Sony Alpha 6400
APS-C camera with a fixed 30mm lens. We fix the ISO,
shutter speed, aperture size, and focus. We choose views
carefully to avoid the appearance of the camera and the au-
thors on the reflective surfaces. We use a few toys, books,
two mirrors, a glass ball with a smooth surface, a glass ball
with a diamond-like surface, and common furniture to con-
struct our scenes, as shown in Fig. 6. Our scenes consist of
46 to 107 images, all at the resolution of 6000×4000, and
the viewpoints are randomly split around the central objects.
We use COLMAP [12] to estimate the camera poses and
use every 1 of 8 images as the test set, and we downsample
all images by a factor of 8 for training and evaluation. To
demonstrate the different distribution of camera poses from
our real captured dataset and the RFFR dataset, we visual-
ize the poses of the scene ’Scan05’ in our dataset and the
scene ’mirror’ in RFFR dataset in Fig. 3.

3. Additional experiment results

Results on our synthetic dataset. We report the de-
tailed performance of our methods on each scene in our
synthetic dataset using PSNR and SSIM, as in Tab. 1. And
we also visualize one test view for each scene in Fig. 7a,
Fig. 7b, and Fig. 7c. Our methods leverage the performance
of NeRF-based methods by a large margin in reflection-
related scenes, and in most scenes with merely refractions,
our methods also improve the performance.

Results on our real captured dataset. We report the de-
tailed performance of MS-Mip-NeRF 360 and Mip-NeRF
360 on each scene in our real captured dataset using PSNR
and SSIM, as in Tab. 2. And we also present 1∼2 test
view(s) for each scene, as in Fig. 8a and Fig. 8b. The qual-
itative and quantitative results both demonstrate that our
method can handle mirror-like objects in the real world.

Results on RFFR dataset. We report the detailed per-
formance of MS-NeRFT and NeRFReN on each scene in
the RFFR dataset using PSNR and SSIM, as in Tab. 3. The
results show that even for forward-facing scenes with mir-
rors, NeRFReN heavily relies on masks to guide the model,
while our method performs stably in both 360-degree and
forward-facing scenes.

Results on Realistic Synthetic 360◦ dataset and Real
Forward-Facing dataset. The Realistic Synthetic 360◦

dataset and Real Forward-Facing dataset are first introduced
in [9], which are commonly used for evaluating the abil-
ity of NeRF-based methods in novel view synthesis. We
train Mip-NeRF and MS-Mip-NeRFB on these datasets be-
cause Mip-NeRF is a commonly used backbone for NeRF-
based method. The results are reported in Tab. 4, which
demonstrate that our multi-space module has no influence
on the representation ability of NeRF-based methods on

(a) Camera poses of the scene ’Scan05’ in our dataset.

(b) Camera poses of the scene ’mirror’ in the RFFR dataset.

Figure 3. Visualization of the camera poses in our real captured
dataset and in the RFFR dataset. We draw training views in black
and test views in blue.

common materials. Note that we only train Mip-NeRF and
MS-Mip-NeRFB with a batch size of 1024 for 2e5 itera-
tions, while in the original paper, Mip-NeRF is trained for
1e6 iterations with a batch size of 4096. Therefore, our re-
ported results are slower. Besides, under such settings, the
models can already render satisfactory results, as in Fig. 4.

4. Limitations and future works
Our methods leverage the performance of NeRF-based

models on reflective surfaces by a large margin in an ex-
plainable way. However, to help NeRF-based methods bet-
ter understand our 3D scenes, there need some constraints
to help the network discriminate the virtual images from
the real scenes. By now, our methods treat everything in the
scenes equally.

Besides, refractive surfaces are often related to irregular
shapes. Thus, the created virtual images are often distorted.
Although our method is helpful in such circumstances, it
fails to understand the curved light path caused by refrac-
tion. Therefore, to further improve the performance on re-
fractive surfaces, a possible way is to introduce non-linear
sub-spaces and model the distorted virtual images in them.



Scene NeRF MS-NeRFB Mip-NeRF Ref-NeRF MS-Mip-NeRFB Mip-NeRF 360 MS-Mip-NeRF 360
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

Scene01 33.48 0.950 37.75 0.967 34.05 0.955 36.23 0.961 39.57 0.973 34.23 0.963 41.47 0.982
Scene02 33.21 0.956 37.06 0.967 33.54 0.960 36.47 0.966 38.84 0.974 33.72 0.966 41.69 0.983
Scene03 36.59 0.966 38.54 0.970 37.68 0.970 38.96 0.971 41.17 0.977 38.74 0.977 42.63 0.983
Scene04 30.41 0.934 35.71 0.961 30.50 0.939 32.70 0.947 36.88 0.968 29.84 0.942 38.84 0.977
Scene05 27.52 0.914 32.85 0.951 28.57 0.918 28.53 0.924 33.73 0.959 26.79 0.917 35.37 0.969
Scene06 34.37 0.937 38.90 0.950 35.31 0.940 37.50 0.950 39.60 0.953 35.38 0.958 41.89 0.973
Scene07 32.41 0.839 32.43 0.838 32.73 0.845 33.01 0.847 32.91 0.845 33.78 0.885 34.07 0.887
Scene08 26.78 0.870 28.27 0.893 27.11 0.879 29.13 0.899 30.09 0.909 28.30 0.936 29.80 0.943
Scene09 32.08 0.890 32.63 0.895 32.73 0.900 32.79 0.898 33.22 0.902 33.20 0.907 32.40 0.898
Scene10 39.04 0.968 40.87 0.976 39.34 0.972 38.78 0.965 41.66 0.979 39.77 0.974 43.06 0.983
Scene11 28.29 0.790 28.56 0.791 28.57 0.797 29.86 0.808 31.60 0.820 28.91 0.842 32.20 0.853
Scene12 31.20 0.936 35.75 0.961 31.53 0.942 32.97 0.946 36.98 0.969 30.76 0.944 37.77 0.972
Scene13 26.04 0.630 25.97 0.620 26.16 0.658 26.03 0.644 26.21 0.660 25.92 0.663 25.74 0.617
Scene14 24.61 0.766 25.54 0.785 24.79 0.776 26.47 0.804 26.06 0.802 25.99 0.852 28.72 0.884
Scene15 25.10 0.740 25.25 0.737 25.53 0.754 26.00 0.777 25.68 0.754 25.55 0.786 25.43 0.762
Scene16 31.56 0.897 34.21 0.913 32.12 0.906 33.96 0.917 35.38 0.920 32.39 0.926 37.38 0.938
Scene17 25.20 0.776 25.64 0.775 25.47 0.794 25.89 0.811 25.54 0.785 24.48 0.799 25.28 0.783
Scene18 33.36 0.927 33.53 0.927 33.68 0.935 34.58 0.938 34.11 0.936 34.38 0.950 35.37 0.953
Scene19 22.86 0.752 23.86 0.769 22.83 0.764 23.72 0.771 24.35 0.789 24.64 0.836 26.87 0.860
Scene20 37.13 0.941 38.41 0.942 38.06 0.944 38.64 0.951 40.01 0.950 38.51 0.967 42.00 0.974
Scene21 26.51 0.641 26.63 0.638 26.95 0.653 27.41 0.666 27.33 0.658 28.06 0.704 28.41 0.710
Scene22 28.80 0.830 30.09 0.866 29.49 0.850 30.40 0.872 31.33 0.895 28.79 0.833 31.22 0.891
Scene23 35.53 0.942 39.08 0.952 38.31 0.949 38.65 0.952 39.87 0.954 36.64 0.957 40.46 0.963
Scene24 32.10 0.898 34.43 0.909 32.64 0.904 34.03 0.911 35.81 0.919 32.14 0.912 36.09 0.930
Scene25 36.37 0.948 37.16 0.947 37.86 0.954 36.57 0.946 39.63 0.955 38.60 0.973 41.96 0.976

Table 1. Detailed PSNR and SSIM of each scene in our synthetic dataset.

(a) Mip-NeRF (b) MS-Mip-NeRFB

Figure 4. A test view from Mip-NeRF and MS-Mip-NeRFB in
scene ’lego’ from the Realistic Synthetic 360◦ dataset.

Scene Mip-NeRF 360 MS-Mip-NeRF 360
PSNR↑ SSIM↑ PSNR↑ SSIM↑

Scan01 27.87 0.917 30.84 0.919
Scan02 27.88 0.905 28.82 0.903
Scan03 27.86 0.898 29.48 0.901
Scan04 24.41 0.846 26.27 0.861
Scan05 27.26 0.911 27.60 0.907
Scan06 24.82 0.844 26.46 0.847
Scan07 26.77 0.904 27.50 0.899

Table 2. Detailed PSNR and SSIM of each scene in our real cap-
tured dataset.

Scene NeRFReN MS-NeRFT

PSNR↑ SSIM↑ PSNR↑ SSIM↑

art1 39.03 0.978 37.51 0.975
art2 41.91 0.970 41.87 0.970
art3 40.62 0.969 40.92 0.970

bookcase 30.26 0.890 29.80 0.885
tv 32.96 0.953 32.81 0.956

mirror 26.81 0.878 32.68 0.936

Table 3. Detailed PSNR and SSIM of each scene in the RFFR
dataset [5].

dataset Mip-NeRF MS-Mip-NeRFB

PSNR↑ SSIM↑ PSNR↑ SSIM↑

Realistic Synthetic 360◦ 30.74 0.942 30.81 0.943
Real Forward-Facing 25.78 0.775 25.59 0.764

Table 4. Results on the Realistic Synthetic 360◦ dataset and Real
Forward-Facing dataset.
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Figure 5. We randomly visualize three training views and two test views for each scene in our synthetic dataset. In Scene01∼Scene05, we
only change the layout and the number of the mirror(s), which can be treated as the basic part of our synthetic dataset; therefore, researchers
can conduct preliminary experiments on them.
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Figure 6. We randomly visualize three training views and two test views for each scene in our real captured dataset.
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(a) Visual comparisons on Scene01∼Scene10. Please zoom in to see the details.
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(b) Visual comparisons on Scene11∼Scene20. Please zoom in to see the details.
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Sc
en

e2
4

Sc
en

e2
3

Sc
en

e2
2

Sc
en

e2
1

Sc
en

e2
5

(c) Visual comparisons on Scene21∼Scene25. Please zoom in to see the details.

Figure 7. We randomly visualize one test view for each scene in our synthetic dataset.
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(a) Visual comparisons on Scan01∼Scan04.
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(b) Visual comparisons on Scan05∼Scan07.

Figure 8. We visualize 1∼2 test view(s) for each scene in our real captured dataset.
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