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Figure I. IoU and visualize results of mapping degeneration with
respect to different characteristics of targets ((a) shape and (b)
local background clutter). We visualize the zoom-in target regions
of input images with GT point labels (i.e., red dots in images) and
corresponding CNN predictions (in the epoch reaching maximum
1oU).

Section [ investigates the mapping degeneration
phenomenon with respect to different characteristics
of targets (i.e., shape and local background -clutter)
for the analyses in Section 5.2.1-Analyses of Mapping
Degeneration.  Section II presents more visual results
of labels and network predictions for the analyses in
Section 5.2.2-Effectiveness. Section III provides additional
discussion of the convergence issue for the analyses in
Section 5.2.2-Evolution Frequency. Section IV includes
additional comparison results for the analyses in Section
5.3. Section V provides comparison results with existing
weakly-supervised segmentation methods.

I. Analyses of Mapping Degeneration

In this section, we investigate the mapping degeneration
phenomenon with respect to different characteristics of
targets (i.e., shape, and local background clutter).

Target Shape. We simulate targets [9] with different
shapes (i.e., 001067, 001313, Misc_103, Misc_106,
XDU992) to investigate the influence of target shape on
mapping degeneration. Note that, we try to keep the
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Figure II. Visualizations of regressed labels during training and
network predictions during inference with centroid and coarse
point supervision.

target size and intensity unchanged when changing the
target shape. Quantitative results in Fig. I(a) show that
more concentrated shape results in higher maximum JoU.
Visualization results show that CNNs can predict a cluster
of pixels in a shape-aware manner, but can only recover
the main body of targets without fine-grained details (e.g.,
wings of drones in 001067 and XDU992).

Local Background Clutter. We simulate a Gaussian-
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Figure III. lossq with respect to evolution frequency f=5 and f=2.

based extended target (with intensity 100 & radius 7),
and add them to different locations of the background
image to investigate the influence of local background
clutter on mapping degeneration. We employ SCR of
the local neighborhood to quantify the local background
clutter. Results in Fig. I(b) show that background clutters
significantly change the observed target appearance in size,
shape, and contrast, and our method can only predict the
high-contrast regions in the input images. Therefore, high-
contrast background clutters introduce false alarms, and
thus degrade the detection performance.

II. Visual Results of Labels and Network
Predictions

In this section, we provides additional visual results of
regressed labels during training and network predictions
during inference on NUAA-SIRST [3], NUDT-SIRST [9],
and IRSTD-1K [18] datasets. It can be observed from
Figure II that our LESPS can effectively regress mask labels
during training, and can achieve accurate pixel-level SIRST
detection in the inference stage.

I11. Discussion of Convergence Issue

In this section, we discuss the convergence issue of our
label evolution framework (i.e., LESPS). Specifically, we
calculate the focal loss between evolved labels and network
predictions before and after label update, and use their
absolute difference (i.e., lossy) to measure the proximity
degree between predictions and labels. Fig. I1I shows lossy
of each update with evolution frequency f=5 and f=2 (i.e.,
update every 5 and 2 epochs). It can be observed that
lossg is gradually reduced in general, which reveals that
predictions gradually approximate labels and networks can
converge steadily. In addition, the training process of lossg
with f=5 is more steady than that of f=2. This is because,
a relatively lower update frequency (i.e., f=5) represents
more training time before label update, and thus stabilize
the training process.

Table I. Average ToU (x102), Py (x102), F,(x10°) values on 3
public datasets [3, 9, 18] of DNA-Net trained with pseudo labels
generated by input intensity threshold, LCM-based methods [6, 7,

] and LESPS under centroid and coarse point supervision. Best
results are shown in boldface.

Centroid Coarse

Pseudo Label ToU yo o ToU o 7

Threshold=0.3 4.92 81.78 13.18 5.67 83.12 11.98
Threshold=0.5 13.24 73.08 5.31 15.54 76.03 4.89
Threshold=0.7 14.51 45.50 4.28 15.21 46.88 3.84
RLCM [6] 2143 89.10 2.67 22.53 90.56 3.69
WSLCM [8] 8.68 86.64 50.10 8.89 84.45 80.24
TLLCM [7] 21.95 90.96 7.72 26.05 94.15 4.27
MSLCM [11] 31.43 93.16 2.50 36.32 92.43 1.17
MSPCM [10] 28.89 92.62 3.84 29.79 93.95 2.28
Ours 57.34 91.87 20.24 56.18 91.49 18.32

Table II. Average IoU(x10?), Py(x10?%), F.(x10°) values
of different methods. ‘“#Params.” represents the number of
parameters. Best results are shown in boldface.

Method
MaskRCNN+ [C3]
PointRend [C4]
Implicit PointRend [C3] | 10 points in bbox
DNA-Net+LESPS (Ours) | 1 coarse point 4.8M

Annotations per object | #Params. | JoU Py Fg
10 points in bbox 88.6M |51.30 94.38 82.77
100+ elaborated points | 120.3M |56.02 94.30 61.48
700.0M |52.00 94.13 85.79
56.18 91.49 18.32

IV. Quantitative and Qualitative Results
IV.1. Comparison to SISRT Detection Methods

Table III provides additional comparative results of
six traditional methods (Max-Median [4], WSLCM [¢],
WSPCM [8], NRAM [16], RIPT [1], MSLSTIPT [13]). It
can be observed that CNN-based methods equipped with
LESPS can outperform all the traditional methods, and can
achieve over 70% IoU and comparable P;, F, values of
their fully supervised counterparts.

Figure IV provides ROC results of ACM [2],
ALCNet [3], DNA-Net [9] equipped with LESPS under
centroid point supervision (i.e., ACM Centroid+, ALCNet
Centroid+, DNA-Net Centroid+) and their fully supervised
counterparts (i.e., ACM, ALCNet, DNA-Net) achieved on
NUAA-SIRST [3], NUDT-SIRST [9], and IRSTD-1K [18]
datasets. It can be observed that ROC results of ACM
Centroid+, ALCNet Centroid+, DNA-Net Centroid+, and
ACM, ALCNet, DNA-Net only have minor differences
(i.e., less than 5%).

Figure V provides additional qualitative results. It can be
observed that CNN-based methods equipped with LESPS
can produce outputs with precise target mask and low false
alarm rate, and can generalize well to complex scenes.

IV.2. Comparison to Fixed Pseudo Labels

Table I provides additional comparisons to more LCM-
based pseudo labels. It can be observed that, compared
with LCM-based pseudo labels, DNA-Net with LESPS can
achieve the highest IoU values with comparable P; and
reasonable F, increase.



Table IIL. ToU (x102), P; (x10%) and F,(x 10%) values of different methods achieved on NUAA-SIRST [3] NUDT-SIRST [9] and IRSTD-

1K [18] datasets. “CNN Full”, “CNN Centroid”, and “CNN Coarse” represent CNN-based methods under full supervision, centroid and
coarse point supervision. “+” represents CNN-based methods equipped with LESPS.
L NUAA-SIRST [3] NUDT-SIRST [9] IRSTD-1K [ 18] Average
Methods Description ToU Py F, ToU Py F, ToU Py F, I F,
Top-Hat [12] Filtering 7.14  79.84 101200 | 20.72 7841 166.70 1006  75.11 143200 | 12.64 77.79 87023
Max-Median [4] | Filtering 417 69.20 55.33 420 5841 36.89 7.00 6521 59.73 512 6427 50.65
RLCM [6] Local Contrast | 21.02  80.61 199.15 15.14  66.35 163.00 1462 65.66 17.95 16.06  68.70 98.77
WSLCM [8] Local Contrast 102 80.99  45846.16 | 0.85  74.60  52391.63 | 099  70.03  15027.08 | 091  74.82  33759.07
TLLCM [7] Local Contrast 1103 79.47 7.27 706 62.01 46.12 536 63.97 4.93 722 6545 21.42
MSLCM [11] Local Contrast 1156 78.33 8.37 6.65  56.83 25.62 535 59.93 5.41 707 6120 13.74
MSPCM [10] Local Contrast 1238 8327 17.77 586  55.87 115.96 733 6027 15.24 723 61.53 55.13
IPI[5] Low Rank 2567  85.55 11.47 1776 74.49 41.23 27.92 8137 16.18 2378 80.47 22.96
NRAM [16] Low Rank 1216 7452 13.85 6.93  56.40 19.27 1525 70.68 16.93 1145 6720 16.68
RIPT [1] Low Rank 11.05  79.08 22.61 2944 91.85  344.30 1411 77.55 2831 1820  82.83 131.74
PSTNN [17] Low Rank 2240 7795 29.11 14.85  66.13 44.17 2457 71.99 35.26 20.61  72.02 36.18
MSLSTIPT [13] | Low Rank 1030 8213 1131.00 | 834 4740  888.10 1143 79.03  1524.00 | 10.02 69.52  1181.03
MDVsFA [14] CNN Full 61.77  92.40 64.90 4538  86.03  200.71 3540  85.86 99.22 4752 8810  121.61
ISNet [18] CNN Full 7204 94.68 42.46 7127 96.93 96.84 60.61  94.28 61.28 67.97 9530 66.86
UIU-Net [15] CNN Full 69.90  95.82 51.20 7591  96.83 18.61 61.11  92.93 26.87 68.97  95.19 32.23
CNN Full 64.92  90.87 12.76 5742 9175  39.733 | 5749  91.58 43.86 59.94  91.40 32.12
ACM [2] CNN Centroid+ | 49.23  89.35 40.95 42.09 9111 38.24 41.44  88.89 60.46 4425  89.78 46.55
CNN Coarse+ 47.81 8821 40.75 40.64 8111 49.45 4037 9259 64.81 4294  87.30 51.67
CNN Full 6791  92.78 37.04 6178  91.32 36.36 62.03  90.91 42.46 63.91  91.67 38.62
ALCNet [3] CNN Centroid+ | 50.62  92.02 36.84 41.58 9228 67.01 4490 9057 84.68 4570 91.62 62.84
CNN Coarse+ 51.00  90.87 42.40 44.14  92.80 32.10 46.75 9226 64.30 4730 9198 46.27
CNN Full 76.86  96.96 225 8742 9831 245 6273 9327 21.81 7567  96.18 22.94
DNA-Net [9] CNN Centroid+ | 61.95  92.02 18.17 57.99  94.71 26.45 52.09  88.88 16.09 57.34  91.87 20.24
CNN Coarse+ 61.13  93.16 11.87 58.37  93.76 28.01 49.05  87.54 15.07 56.18  91.49 18.32
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Figure IV. ROC results of different methods achieved on (a) NUAA-SIRST [3], (b) NUDT-SIRST [9], and (c) IRSTD-1K [!8] datasets.

“Centroid+” represents CNN-based methods equipped with LESPS under centroid point supervision.

V. Comparison to Existing Weakly-Supervised
Segmentation Methods

We equip DNA-Net with LESPS, and compare with
existing weakly-supervised segmentation methods'.
Results are shown in Table II. It can be observed that
general weakly-supervised segmentation methods require
much more annotation effort and computational cost
(i.e., 18-146 times of our method) but the performance is
comparable or worse. It is demonstrated that different from
general methods, point-supervised SISRT detection has its
unique characteristics, and needs further exploration.

! All models are implemented by their officially public codes.
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