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The following materials are provided in this supplementary file:
e The proofs of Theorem 1 and Lemmas presented in the main paper (cf. Section 3 in the main paper).
* The detailed algorithms of SGDM_BK and AdamW _BK (cf. Section 4 in the main paper).

* The hyper-parameter settings of different optimizers and some ablation studies of the proposed method (cf. Section 5
in the main paper).

A. Proofs of Theorem 1 and Lemmas

Lemma 1 [1,2]. For any sequence of matrices Hp = ... = Hy > 0, the regret of online mirror descent holds that
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R < 5257, (lwe =l lfwen —wllie) + 55, (lodlin)” (1)
If we further assume D = max;<r ||w; — w*||2, then we have
D? n
R(T) < %Tr (Hp) + Z (lgellzz,)? 2)

The proof of Lemma 1 can be found in [1,2].

Al. Proof of Theorem 1

Before proving Theorem 1, let’s first prove the following Proposition 1.

Proposition 1. For any ©1 > 0 and x2 > 0, it holds that

273 + xl\}fr“ 2\/71. 3)
Proof. Let f(x) = \/x. Because it is a concavity function, for any z; > 0 and z2 > 0, we have
f@2) < f21) + f21) (22 — 21), )
which is
V3 < VE+ ?ng' 5)

Therefore, Eq. (3) holds. The proof is completed. B

Theorem 1. For any cone constraint ¥ C R, we define a guide function Fr(S) on ¥ as

T
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and then define the matrix Hr as

Hy=CrS St = i Fr(S
r=CrSr, Sr=awg wmin 7(8), (7)

where Crp = \/Fr(St). The regret of online mirror descent holds that
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Proof. According to Lemma 1, we have
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For the first term on the right side of Eq. (9), according to the definition of Hp and St, we have
TI‘(HT) = Tr(CTST) = CTTI‘(ST) < CT. (10)
Then we only need to prove
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in order to prove Eq. (11), we need to prove that
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The above equation can be proved by mathematical induction. For T' = 1, (||gt||.’§j,1)2 <2 (||g,g|\_*;{1)2 holds obviously.

Suppose it holds that
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Meanwhile, we can prove that
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Therefore, for Eq. (15), we have
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According to Proposition 1 and let z; = C2, 2o = C2._|, we have
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Now Eq. (13) is proved. Combining it with Egs. (9), (10) and (11), we obtain the regret bound Eq. (8). The proof is
completed. l
A2. Proof of Lemma 3

We then prove Lemma 3 in the main paper. To prove it, we first present the following Propeositions 2 ~ 5.

Proposition 2. It holds that
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The proof is completed. W



According to Proposition 2, we also have
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Proposition 3. If A > B, then forany S = 0, Tr(SA) > Tr(SB).
Proof. Tr(SA) — Tr(SB) = Tr(S(A — B)). Let C = A — B = 0, then C is PSD. We can find a matrix @, which meets
C = QQ". Therefore, Tr(SC) = Tr(SQQ ") = Tr(Q ' SQ) = Zl 1 @; Sq; > 0. The proof is completed. W
Proposition 4. Ifz; > 0and y; > 0 for i=1,2,...n, we have >\ xz;y; < (37 ) (X7 vi)-
Proof: (323 i) (307 wi) = (07 @) (007 wi) = 2oim; wayy + Doz @ayy > D7 wiyi. The proof is completed. M

The following proposition summarizes some properties of the Kronecker product, which can be found at [3].
Proposition 5 [3]. Let A, B, A’, B’ be the matrices with appropriate dimensions. Then the following properties hold:
(1) (A2 B)T =AT@ BT, (A B)™' = A~! ® B! (if A and B are invertible);

(2) (A B)(A'®@B')=(AA") ® (BB');

(3) ifA>0and B >0, A® B = 0;

(4) Tr(A® B) = Tr(A)Tr(B).

We then prove Lemma 3 in the main paper.

Lemma 3. Denote by Ly = 5}, 3" | 8::8; and Ry = Y] S0 | xux/;, there is
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Proof. From Proposition 2, we have
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Together with Propesition 3, we have
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_ 1
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Finally, according to the properties of Kronecker Product in Proposition 5, we have
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The proof is completed. B

A3. Proof of Lemma 4
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We first present the following Propositions 6 ~ 7 before we prove Lemma 4.

Proposition 6. Suppose D € R is a diagonal matrix and D = 0, then

where ||Al[12 =), Z A

UERdgl,i[r}UT:IHUDHlQ =Tr(D), (25)

is the matrix Lio-norm, and U = I is the optimal point.

Proof. For any orthogonal matrix U € R%*?, denote by {u;}2_; the row vectors of U, we have

Tr(D) = Tr(UDU ")
d
= Z u; Du;
i=1
d
= Z<D’U,Z, ’U,Z‘>
i=1

d
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= llu/ Dl
i=1

= [[UD||12.

When U = I, cos(Dwu;,u;) = 1fori=1,2,...,d, and the equality holds. The proof is completed. Bl



Proposition 7. Suppose A € R?¢, A = 0, D € R*™? and D is a diagonal matrix, then

1 1 1
i Tr (D 'A) = —— Diag((A2)%1)2
arg i r( ) A% iag((A2)~"1) (27)
and .
min ~ Tr (D' A) =||A2]]3,. (28)

D0.7(D)<1
Proof. Let D = Diag(d) and B = Az, then we have
d_d g2
mn Tr(D'A)= min Tr(D'BBT)= Z Z f (29)

D>=0,Tr(D)<1 D=0,Tr(D)<1

By introducing multipliers A > 0 and 6 > 0, we can write the Lagrangian of the constrained problem in Eq. (29) as

Obviously, d; # 0. According to the complementarity conditions, we know A; = 0. Then, we have
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With the constraint 17 d < 1, we can choose a proper 6 so that
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meets the constraint. Therefore, d = Ll)%l, D = Diag((A2)®21)®2) and the minimum value of the
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objective function is
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The proof is completed. B
Then we prove Lemma 4 in the main paper.
Lemma4. If A > 0, we have
in Tr(STTA) = A /Tr(A%).
arg o omin T ) /Tr(AZ) (34)
Proof. Because
min ~ Tr(S7'A) = min T(UD U A)
5§+0,Tr(S)<1 D=Diag(d),d=0,1Td<1,UUT=I (35)
= min min T(UD'U" A),

UU T =I D=Diag(d),d>01T d<1,



we can find the optimal diagonal matrix D and orthogonal matrix U to obtain the optimal S by S = UDU . We first fix

U to find the optimal D. Since
min Tr(UD'U"A) = min Tr(D'U T AU), (36)
D=Diag(d),d>0,1Td<1, D=Diag(d),d>=0,1Td<1,
according to Proposition 7, we know the optimal D is
1 1 1
= Diag((U" A2)®?1)®2, (37)
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We then minimize Eq (38) w.r.t. U. Suppose the SVD decomposition of A is A = UsD AU j, there is
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According to Proposition 6, we know that when U TUL=1,ie,U=Upy,, Eq (39) reaches its minimal value. Therefore,

we have the optimal D as follows
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The proof is completed. B

A4. Proof of Lemma 2

Finally, we prove Lemma 2 in the main paper.
Lemma 2. Suppose V is the set of either diagonal matrices or full-matrices, according to the definition of S and Hp

(42)
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in Eq. (7), we have
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Proof. Because Hy = C1 ST, we see that we only need to solve Sp. We first prove the case when U is the set of diagonal
matrices. Let S = Diag(s) and H = Diag(h), where s and h are the diagonal vectors of S and H, respectively, we have
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stO,lngl 7 SL
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where s = 0 means all the coefficients of vector s are non-negative. By introducing multipliers A > 0 and 6 > 0, we can

have the Lagrangian of the above constrained optimization problem:

Obviously, s; # 0, and according to the complementarity conditions, we know A; = 0. Then, we have
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and finally we have Hp = Diag(( Y1, g: © g¢)”?).
When VY is the set of full matrices, we have
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Algorithm 2: AdamW _BK

Algorithm 1: SGDM_BK

Input: T, Tir, o, €, B, Wo, Lo, Ro,
Output: W

Input: T, Tir, o, €, €', B1, B2, Wo, Lo, Ro.
Output: W
1 fort=1:T do

1 for r=1:T do 2 )f(tW:T[mti]%l’ Ay = [0u]in1. Gt = Vw, L;
T 3 if t%T = O then
2 X = [®iliq, Ar = [6u:]i21, G = Vw, L _ _ T
3 if t%Ts = O then ‘f ;ﬁ :O‘;‘j‘*lJr(l D‘)ééééj’,
4 Lt:oth_1+(1fo¢)AtA;r; > t=aRi 1+ (1-a)X: X,
_ T 6 else
: else fe = ol =X X, 7 | Li=Li 1, R =Ry
8 end
7 4 L: =Lt 1,Rt = Rt 9 if t%T;, = O then
z le;) t%T:. — O then 10 Compute A2 and \E by Power Tteration;
0Tir =
10 Compute Afnaz and )\maz by Power Iteration; 1 Compute Lt = (Lt + )‘771(115[)
~ _1 .
11 Compute L= (L¢ + AmaLeI) 5 and R; = (R: + A\ _eI)™ 2 by Schur-Newton Iteration;
12 else
Ry + A eI 2 by Schur-Newton Iteration; =~ -~ ~ ~
o | else = (Bt Amagel) "2 by 13 | Li=Li1andRi=L; .
i i B i 14 end
13 t = Li¢g—1 an t = Lit—1 PN = ~ =~ 1G]]
14 end 18 Gi=LiGiR:. G = G, HGZHE
15 | Gu=LGRi, G =G g2 My = M, + (1~ 5)Gu; =BiM1 + (1 - B1)Ge;
16 W1 = W, — nM;y; 16 Vi=p2Vi1 4+ (1 — B2)Gt © Gy
17 end 17 M, =M V= Y,
1-5] 1-5]
18 Wip1 =W, —n—2%t
t+1 t n\/7t+s/
19 end

According to Lemma 4, we have
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The proof is completed. B

B. The Algorithms of SGDM_BK and AdamW_BK

(5D

(52)

(53)

By embedding our proposed AdaBK into the commonly used algorithms SGDM and AdamW, we obtain two new opti-

mizers, namely SGDM_BK and AdamW BK, which are described in Algorithm 1 and Algorithm 2, respectively.



Table 1. Settings of learning rate (LR), weight decay (WD) and WD methods for different optimizers on CIFAR10/100. Here, the WD
methods include L2 regularization weight decay (L2 in short) and weight decouple (decouple in short).

Optimizer | SGDM AdamW  Adagrad RAdam  Adabelief Shampoo  KFAC  SGDM_BK AdamW_BK
LR 0.1 0.001 0.01 0.001 0.001 0.001 0.01 0.05 0.001
WD 0.0005 0.5 0.0005 0.5 0.5 0.0005 0.005 0.001 0.5
WD method Lo decouple Lo decouple  decouple Lo decouple Lo decouple

Table 2. Settings of learning rate (LR), weight decay (WD) and WD methods (L2 and decouple) for different optimizers on ImageNet.

Optimizer SGDM AdamW  Adagrad RAdam  Adabelief Shampoo KFAC  SGDM_BK AdamW_BK
ResNet]8 LR 0.1 0.001 0.01 0.001 0.001 0.001 0.01 0.1 0.001
WD 0.0001 0.1 0.0001 0.1 0.05 0.0001 0.001 0.0001 0.1
ResNet50 LR | 0.1 0.001 0.01 0.001 0.001 0.001 0.01 0.05 0.0005
WD 0.0001 0.1 0.0001 0.05 0.1 0.0001 0.001 0.0003 0.3
WD method ‘ Ly decouple Ly decouple  decouple Ly decouple Ly decouple
Table 3. Testing accuracies (%) of DNNs with different dampening e.
Ts = 50 and T3 = 500
€ 0.1 0.01 0.001 0.0001 0.00001 0.000001
ResNetl8 SGDM_BK | 78.60 £.23  79.26 + .12 79.21£.22 7953+ .22 79.35+.29 79.36 £ .22
AdamW_BK | 77.80 £+ .23 78.38 £.10 7843+ .15 78.61+.26 7878+ .15 78.55+£.20
ResNet50 SGDM._BK | 79.89+ .31  80.66 .30 80.89 .27 81.00x.17 81.10%+.19 81.15+ .23
AdamW_BK | 79.57 £.15 80.11 4 .21 80.10+.14 7997+ .31 80.13+.15 80.11+.19
Ts = 200 and T3, = 2000
€ 0.1 0.01 0.001 0.0001 0.00001 0.000001
ResNet18 SGDM BK | 78.474.17 7897+.22 79314 .23 79.24+.05 79.30+.07 79.17+.16
AdamW_ BK | 77.84+ .14 7839+.18 78.63+.16 78.394.17 78.66+ .34 78.57+£.29
ResNet50 SGDM BK | 80.07+.16 80.80+£.09 80.944+.30 80.95+.31 81.264+.20 81.04=%.15
AdamW BK | 79.36 .11 79.78+&.16  80.06 £.23 80.114.05 80.15£.19 79.95 £ .29
Table 4. Testing accuracies (%) and training time (h) with different updating intervals.
ResNet18
Baseline T 5 10 20 50 100 200 500
Tir 50 100 200 500 1000 2000 5000
SGDM 77.20 £ .30 SGDM_BK 79.35 £ .20 79.23 + .18 79.37 £ .23 79.47 + .24 79.37 £ .11 79.30 £ .07 79.29 + .13
Time 1.12 Time 3.66 2.85 2.08 1.62 1.46 1.39 1.34
AdamW 77.23 £ .10 AdamW_BK 78.43 £ .17  78.58 + .32 78.36 £ .15 78.38 £ .23 78.62 £ .16 78.66 £ .34 78.53 £ .10
Time 1.16 Time 3.68 2.87 2.10 1.65 1.49 1.42 1.36
ResNet50
SGDM 77.78 £ .43 SGDM_BK 81.21 + .21 81.09 £ .18 81.10 £.18 81.06 .14 80.86 £ .10 81.26 +=.20  81.00 £ .26
Time 3.78 Time 7.57 6.35 5.23 4.58 4.33 4.21 4.16
AdamW 78.10 £ .17 AdamW_BK 80.02 £ .07  80.08 £ .18 80.00 £ .13 80.07+ .29 80.06 £ .13 80.15 + .19 80.06 £ .30
Time 3.83 Time 7.57 6.36 5.26 4.60 4.38 4.26 4.20

C. Hyper-parameter Settings and Ablation Studies

We first give the hyper-parameter settings of all optimizers in the image classification task, then give the tuning results
of the hyper-parameters of AdaBK, including the dampening parameter ¢ and the statistics updating intervals 7T and T5,..
Meanwhile, we provide some ablation studies of SGDM_BK and AdamW _BK on memory usage and training time.

The CIFAR100 dataset is employed for the ablation studies of AdaBK. The initial learning rate (LR) and weight decay
(WD) of SGDM_BK and AdamW are 0.05 and 0.001, and 0.001 and 0.5, respectively. The training schedule is the same as
that in the main paper. Our experiments are conducted with NVIDIA GeForce RTX 2080Ti GPUs under the PyTorch 1.11
framework. All the experiments, if not specified, are repeated 4 times, with the performance reported in a “mean + std”
format and the training time reported in average.

LR and WD Settings. We first introduce the hyper-parameters of different optimizers we evaluated in Section 5 of our main
paper. We tune the LR and WD of all optimizers by grid search. On CIFAR100/10, we tune the LR in {1e=%, 5e 4574, 1e 73,
5e73,1e72,5e72,0.1} and WD in {le *,3e™% 5e7%, 1e72,3e73,5e73,1e72,3¢72,5¢72,0.1,0.3,0.5}, and choose the
best combination of them for all optimizers. The final settings are described in Table 1. While for SGDM_BK, we use a

10



learning rate of 0.1 and weight decay of 0.0005 for DenseNet. On ImageNet, we refer to the strategies in [4] to tune the LR
and WD on ResNet18 and ResNet50, respectively.

The final settings are described in Table 2. For Swin transformer in ImageNet, AdamW uses the default LR (0.001) and
WD (0.05) of MMClassification, while AdamW _BK uses an LR of 0.002 and WD of 0.025.

Dampening. Table 3 shows the testing results for different dampening parameters under different updating intervals, i.e.,
T = 50 with T;,. = 500, and T, = 200 with T}, = 2000. From the testing results, we can see that our optimizer is relatively
stable for different choices of dampening. The maximum performance fluctuation does not exceed 1.19%. We then set € to
0.00001 in the experiments.

Statistics Updating Intervals. The testing accuracies and training time of different settings of intervals T, T}, are reported
in Table 4. In these experiments, we set the dampening parameter € to 0.00001. We can see that the increase of statistics
update interval can greatly reduce the time required for training DNNs while keeping similar accuracy. We then set T = 200
with T3, = 2000 in the experiments.
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