
Appendix
This document provides comprehensive descriptions and

results of our method that could not be accommodated in
the main paper due to space restriction. More generated
samples from MeBT and the baselines [11, 31, 41, 54] can
be found at https://sites.google.com/view/mebt-cvpr2023.

A. Experimental Details
In this section, we first describe the detailed implementa-

tion of training and inference in Section 3.3 in the main pa-
per. Then, we provide additional descriptions of the datasets
and baselines used in Section 5 in the main paper.

A.1. Training and Inference

Training For all experiments, we used the same network
architecture except for the size of latent bottleneck NL. Fol-
lowing the configuration of TATS [11], all models have 24
attention layers, 16 attention heads, 1024 embedding di-
mensions, and learnable positional embedding for all spa-
tiotemporal positions. For the size of latent bottleneck, we
used NL = 128 for SkyTimelapse 16-frame videos, and
NL = 256 otherwise. We use AdamW optimizer [29] with
β1 = 0.9 and β2 = 0.95. Table 5 summarizes our training
configuration for all experiments.

Inference When sampling long videos, we decode Nd to-
kens by appending a single token to the context tokens Nd

times before applying the iterative decoding to hold the con-
sistency of the video. Then, the iterative decoding is applied
with the Nd decoded context tokens. For the iterative de-
coding, we adopt a top-k sampling strategy when sampling
the code from logits. We also adopt context temperature
annealing when updating the context tokens to increase the
diversity of samples following the official implementation
of MaskGIT4. Specifically, let pi ∈ (0, 1) be the probability
value of sampled token i, and s, S be the current decoding
step and total decoding steps, respectively. Then, we update
context tokens with top-Ns decoded tokens with the high-
est confidence scores ci = pi + Gumbel(0,1) ∗ (1− s

S )τ .
For the revision, we repeated the revision NR times with
the logits scaled with a certain temperature. The specific
configuration for each experiment is summarized in Table
6.

A.2. Datasets

SkyTimelapse SkyTimelapse [52] contains time-lapse
videos that illustrate the dynamics of the sky such as the
growth and motions of clouds. We used the training split
to train the model and the validation split to measure the
FVD. We train our model with videos that are longer than

4https://github.com/google-research/maskgit

the training length. We utilized 2,115 videos for training the
short-term models and 1,059 videos for training the long-
term models.

Taichi-HD Taichi-HD is a collection of videos of a sin-
gle actor performing Taichi. Taichi-HD has a total of
2,854 videos including both training and validation split.
For Taichi-HD, we utilize both splits and sampled every
4 frames when training on 16-frame videos following the
setting of [11, 54]. For 128-frame videos, we sampled all
frames for training as the 4-frame sampling drops 2,438
videos over 2,854 videos. By sampling every frame, we
could utilize 2,760 videos for training the 128-frame model.

UCF-101 UCF-101 is an action recognition dataset that
contains 13,320 videos with 101 classes in total. We trained
our short-term model on the training split with 9,537 16-
frame videos and our long-term model with 6,469 128-
frame videos.

A.3. Long-term Video Generation Baselines

MoCoGAN-HD MoCoGAN-HD [41] models videos by
training a motion generator on the image latent space pro-
vided by a pre-trained image generator. The motion genera-
tor of MoCoGAN-HD is implemented with RNNs and thus
has sub-quadratic complexity to the video length. There-
fore, we trained MoCoGAN-HD with 128-frame videos for
long-term comparison.

DIGAN DIGAN [54] considers a video as a function that
outputs the RGB pixel value for the given spatiotemporal
coordinate. DIGAN models videos with a motion discrimi-
nator that achieves constant complexity by discovering un-
natural motions when two frames and the time gap between
frames are given. As the discriminator gets two frames
and the video is generated by a coordinate-based network,
DIGAN has sub-quadratic complexity to the video length.
Thus, we trained DIGAN with 128-frame videos for long-
term comparison.

CCVS CCVS [31] is a video prediction model that uti-
lizes optical flow and an autoregressive transformer. CCVS
can generate longer videos by sliding the attention window,
but due to the quadratic complexity of the autoregressive
transformer, it cannot be directly trained with long videos.
Hence, for the long-term comparison, we utilized the 16-
frame CCVS model to predict 128-frame videos from ran-
domly sampled real frames as an initial frame.

TATS TATS [11] models videos by adopting an autore-
gressive transformer and a time-agnostic 3d VQGAN. The
proposed time-agnostic 3d VQGAN can decode longer

https://sites.google.com/view/mebt-cvpr2023


videos beyond the training length. Therefore, TATS-base
can generate longer videos by sliding the attention window.
However, due to the quadratic complexity of transformers,
TATS-base cannot directly model long videos. To address
this issue, the authors proposed TATS-hierarchical that gen-
erates long videos sparsely and interpolates the missing
frames. We compared TATS-base by applying a sliding at-
tention window, and TATS-hierarchical by training the hier-
archical model on 128-frame videos.

A.4. Comparison to Sparse Attentions

This section presents more in-depth analysis and com-
parisons with the baselines presented in Section 5.4. Let
N(= H×W ) and T denote the number of tokens in spatial
and temporal dimensions, respectively. Then,

1. Axial attention [15] alternates attention over horizon-
tal, vertical, and temporal axes. The queries in each at-
tention layer can only interact with tokens on the same
axis. The overall complexity is O(NT (H +W +T )).

2. Window attention [12] alternates attention over spa-
tial and temporal axes. It performs frame-wise atten-
tion over N tokens followed by spatio-temporal atten-
tion over n × T tokens where n(= 16) is the size of
spatial window. The complexity is O(N2T + nNT 2).

3. Local attention [51] computes the attention within a
fixed number (n) of spatio-temporal neighborhood to-
kens. The complexity of local attention is O(nNT ).

While axial attention and window attention are asymp-
totically more efficient than dense attention of O(N2T 2),
they still have quadratic complexity with respect to the spa-
tial (N ) or temporal dimension (T ). On the other hand, local
attention and MeBT with n latent codes have a linear com-
plexity of O(nNT ) for both N and T. However, local at-
tention cannot effectively model the long-term dependency
of tokens due to the limited receptive fields, and its bene-
fits are often not fully leveraged due to the lacking support
in both hardware and software for the sparse operations5.
Therefore, we only compared MeBT with axial and win-
dow attention in our ablation study in Section 5.4.

B. Empirical Analysis on Memory Complexity
We compare MeBT’s empirical memory consumption

over video lengths with an autoregressive transformer by
measuring the training peak memory on a single A100 GPU
with 80GB of VRAM with batch size 4. The results are
shown in Figure 8. As shown in the figure, the training peak

5Most of the currently available implementations of local attention is
not leveraging the sparse operators, which makes them have the same com-
plexity as dense attention.

Figure 8. Empirically measured training peak memory over train-
ing video lengths. MeBT showed linear complexity to the video
length, while TATS showed quadratic complexity.

memory of MeBT scaled up linearly while the autoregres-
sive transformer [11] showed quadratic growth. In particu-
lar, with batch size 4, we couldn’t train the autoregressive
transformer with videos longer than 36 frames represented
with 2304 tokens due to the out-of-memory error. Com-
pared to the autoregressive transformer, our model spends
about 40GB when training with 128-frame videos (8,192
tokens). It shows that MeBT is much more efficient than the
transformer in long videos and capable of modeling longer
videos directly.

C. Additional Qualitative Results
In this section, we extend the discussion in Section 5.3 in

the main paper with additional qualitative results. The gen-
erated videos from MeBT and the baselines can be found at
https://sites.google.com/view/mebt-cvpr2023.

C.1. Qualitative Comparison on SkyTimelapse

The generated videos from the baselines and MeBT are
displayed in Figure 9. As shown in the figure, our model
demonstrates consistent high-fidelity sky videos. To be spe-
cific, compared to TATS-base and TATS-hierarchical, our
model showed better consistency on modeling the static
ground. This is because our model can decode the to-
kens in a bidirectional manner. As autoregressive trans-
formers follow the raster-scan ordering, the tokens that
represent the ground in the previous frame and current
frame are far away on the sequence. Compared to DI-
GAN [54] and MoCoGAN-HD [41], MeBT exhibits high-
fidelity video generation while DIGAN shows unrealistic
artifacts and MoCoGAN-HD collapses when generating
long-term frames.

C.2. Qualitative Comparison on Taichi-HD

The generated videos on Taichi-HD are shown in Fig-
ure 10. Unlike other baselines, MeBT could model the
non-linear motions in Taichi by connecting the basic ac-
tions. Specifically, DIGAN showed difficulties in generat-
ing non-linear motions and MoCoGAN-HD could not keep
the background and actor consistently. The frames gen-
erated by TATS-base become brighter as the video goes
longer due to the error propagation, and TATS-hierarchical

https://sites.google.com/view/mebt-cvpr2023


showed temporally ziggy motions by adopting two sepa-
rately trained transformers. The ziggy motions of TATS-
hierarchical are best viewed on the website.

C.3. Qualitative Comparison on UCF-101

The generated videos on UCF-101 are displayed in Fig-
ure 11. On the complex UCF-101 dataset, DIGAN and
MoCoGAN-HD failed to model complex structures such as
human faces. On the other hand, transformer-based models
(TATS, MeBT) could model complex structures. However,
TATS-base showed unnatural artifacts due to the error prop-
agation, and TATS-hierarchical showed inconsistent quality
between the keyframes generated by the hierarchical trans-
former and the interpolated frames. Compared to the base-
lines, MeBT generates complex motion that combines both
camera motion and horse riding.



Table 5. Training configuration for all experiments. Subscripts denote the length of training videos.

Dataset SkyTimelapse16 Taichi-HD16 UCF-10116 SkyTimelapse128 Taichi-HD128 UCF-101128

Batch size 24 128 128 40 48 48
Learning rate 1.08e-5 3e-5 3e-5 1.8e-5 3e-5 3e-5
Training steps 400k 750k 2.6M 500k 3M 3.55M
Dropout rate 0.1 0 0 0.1 0 0

Table 6. Decoding configuration for all experiments. Subscripts denote the length of training videos.

Dataset SkyTimelapse16 Taichi-HD16 UCF-10116 SkyTimelapse128 Taichi-HD128 UCF-101128

Nd 0 0 0 64 64 64
S 32 64 128 32 32 32
top-k - - - 32 32 32
γ cosine cosine cosine cosine cosine cosine
τ 8 2 6 4 4 2
R 2 2 4 2 2 32
temperature 0.7 0.3 0.7 0.7 0.1 0.1
NR 2 8 4 2 4 2

MeBT128

MoCoGAN-HD128

DIGAN128

TATS-base16

TATS-hierarchical128

Figure 9. Generated videos on SkyTimelapse. We displayed every 10th frame in the generated video. The subscript denotes the length of
training videos. More samples can be found on the website.



MoCoGAN-HD128

DIGAN128

TATS-base16

TATS-hierarchical128

MeBT128

Figure 10. Generated videos on Taichi-HD. We displayed every 10th frame in the generated video. The subscript denotes the length of
training videos. More samples can be found on the website.

MeBT128

MoCoGAN-HD128

DIGAN128

CCVS16

TATS-base16

TATS-hierarchical128

Figure 11. Generated videos on UCF-101. We displayed every 10th frame in the generated video. The subscript denotes the length of
training videos. More samples can be found on the website.


