
Deformable Mesh Transformer for 3D Human Mesh Recovery
Supplementary materials

Yusuke Yoshiyasu
National Institute of Advanced Industrial Science and Technology (AIST)

1-1-1 Umezono, Tsukuba, Japan
yusuke-yoshiyasu@aist.go.jp

Figure 1. Qualitative comparison with METRO [5].

1. Additional evaluation results

1.1. Qualitative comparison against METRO [5]

We qualitatively compare DeFormer and METRO [5]
in Figs. 1 and 8-10. Here we constructed the METRO
model using the HRNet-w48 backbone model. We trained
it on multiple datasets for 50 epochs and fine-tuned for
10 epochs following the instruction provided in METRO’s
repository. We obtained similar 3DPW scores as reported
in their repository. METRO produces the results with large
errors on some of the difficult cases, such as large shape dis-
tortions, large image-to-mesh miss-alignments, orientation
flips and confusions in left/right legs, whereas DeFormer
fits a mesh model more stably for these cases (Figs. 1 and
9). DeFormer is also better at recovering subtle poses such
as head, hand and foot poses than METRO (Figs. 8 and
10.These results show that DeFormer performs better in 3D

human mesh recovery than METRO by exploiting multi-
scale feature maps that contain global and local spatial con-
texts.

1.2. 2D keypoint detection on COCO dataset

We evaluated the mesh-to-image alignment ability of
DeFormer based on the 2D keypoint detection task on
COCO dataset. We follow the same evaluation protocol pro-
vided by PyMAF [11]. As shown in Table 2, DeFormer per-
forms the best among the human mesh recovery approaches
[3–5, 11].

1.3. Generalization to hand mesh recovery

To evaluate the generalization ability of DeFormer to
other mesh recovery tasks, we trained and tested on the
FreiHAND dataset [2]. DeFormer achieves the best per-
formance among the transformer approaches [1,5,6]. In the

1



Table 1. Comparisons of transformer-based mesh recovery approaches on FreiHAND. Test time augmentation is not used for these results.

Method PA-MPJPE ↓ PA-MPVPE ↓ F@5mm ↑ F@15mm ↑
METRO-HRNetW64 [5] 6.7 6.8 0.717 0.981

FastMETRO-L-HRNetW64 [1] 6.5 — — 0.982
MeshGraphomer-HRNetW64 [6] 6.3 6.5 0.738 0.983

DeFormer-TransformerSA-HRNetW48 6.2 6.4 0.743 0.984
DeFormer-BodySparseSA-HRNetW48 6.3 6.6 0.729 0.984

Table 2. Comparison of 2D keypoint detection performance on
COCO dataset. Numbers for [3, 4] are taken from [11].

Method AP AP50 AP75 APM APL
GraphCMR [4] 9.3 26.9 4.2 11.3 8.1

SPIN [3] 17.3 39.1 13.5 19.0 16.6
PyMAF [11] 24.6 48.9 22.6 25.7 24.1
METRO [5] 20.0 48.2 13.3 22.1 18.8
DeFormer 28.6 59.9 24.8 30.7 27.3

hand mesh recovery case, the full transformer self-attention
performs better than BodySparse-SA possibly because the
hand shape and pose are more non-locally correlated to each
other than the body.

1.4. Accuracy across iterations

Figure 2 shows that our mesh alignment feedback loop in
the decoder improves the quality of image-mesh alignment,
such as making the head orientation correct. We also mea-
sured accuracy of DeFormer across iterations (Table 3). The
results show DeFormer’s feedback loop indeed improves its
accuracy through iterations.

Figure 2. Visualization of reconstruction results across different
iterations in the feedback loops within the transformer decoder.

Table 3. Quantitative evaluation across iterations

t = 1 t = 2 t = 3
MPJPE (PA-MPJPE) 54.9 (41.2) 45.3 (33.3) 43.8 (31.2)

1.5. More comparisons on transformer approaches

We provide more comparison results on transformer-
based approaches in Table. 6.

2. Additional ablation
2.1. Memory efficiency

The main contributions leading to memory efficiency of
DeFomer come from: 1) the decoder-only architecture, 2)
the use of deformable cross attention in DMA and 3) the
learning of sparse connectivities in BodySparse-SA.

Firstly, unlike [1, 12] who used an encoder-decoder ar-
chitecture, removing the encoder reduces memory costs
without degrading its performance too much. In fact, when
training with a batch size of 16, the memory consumption
reduced approximately 7GB for a 256 × 192 input image
setting and 16GB for 384 × 288 input image setting, while
keeping performance drops by 0.2 PA-MPJPE only.

Secondly, with deformable cross attention in DMA, we
can efficiently aggregate and exploit multi-scale image fea-
ture maps by attending only to a small set of key sampling
points around reference points. For example, in the case of
a 384 × 288 image and 6904 queries, attention computa-
tions can be reduced from 6904× (962 +482 +242 +122)
pixels with the standard transformer attention, which is pro-
hibitive, to 6904×4 reference points with deformable cross
attention.

Thirdly, memory efficiency is further improved using
BodySparse-SA that exploits the sparse connectivity pat-
terns extracted from a human body mesh model and its
skeleton, which can restrict self-attention access patterns.
Using 6904 queries, DeFormer with BodySparse-SA can be
trained with a batch size of 30, whereas that with the stan-
dard transformer-SA can work with a batch size of up to
2. With the batch size of 2, the former uses 3.6GB and the
latter uses 38GB memory. Furthermore, when training De-
Former with batch size of 16, using the approximate mini-
mum degree (AMD) algorithm further reduces 0.6GB mem-
ory cost and the use of sparse v2j and j2v relations, instead
of dense ones, leads to 0.2GB memory reduction.

2.2. Initial query encoding

Table 4 shows comparison between different types of
query encoding. We tested the query encoding approaches



using learned embedding [12] and using the 3D coordinates
of a template human mesh as in METRO [5] but increasing
their dimensions by MLPs or by sinusoidal functions [10] to
get position embedding. For the approach using a template
mesh, we also tested to construct the initial appearance fea-
ture from global 1× 1 visual features from the encoder. As
shown in Table 4 using learned embedding for both appear-
ance feature and position embedding works the best.

Table 4. Ablation on initial query encoding

Query encode MPJPE↓ PA-MPJPE ↓
Template (MLP) 45.6 31.9
Template (Sine) 46.5 32.4

Template + global feat. 45.2 31.8
Learned embed. 44.8 31.6

2.3. Query and reference point refinement

We tested the models with and without refinement of
query and reference points. As shown in Table 5, refining
reference points in decoder layers is effective in improv-
ing performance. On the other hand, the DAB-DETR like
style query updates [7] in decoder layers do not contribute
in performance improvements in our case. This is proba-
bly because in our case reference points already contain the
knowledge about the deformed geometry. The queries work
better by carrying information about the undeformed canon-
ical pose, in order to promote non-local image-to-mesh at-
tentions.

Table 5. Ablation on query and reference point refinement

Refinement MPJPE ↓ PA-MPJPE↓Query Ref. points
— — 45.2 32.6
— ✓ 44.8 31.6
✓ ✓ 45.3 31.9

2.4. Comparison of upsampler

We use an upsampling technique similar to the one based
on a linear layer proposed in [5, 6]. However, using a lin-
ear layer to perform upsampling from 1.7K vertices to 6.9K
vertices requires many network parameters. We thus use a
two-layer MLPs having a bottleneck with 512 hidden-layer
dimension. This reduces 7M model parameters from the
linear upsampler, while achieving similar upsampling qual-
ity as shown in Fig. 3. Using sparse matrices [8] to perform
upsampling as in [1, 4] produces non-smooth distorted re-
sults, which usually requires projections onto SMPL body
models.

As with the linear layer based upsampler, one issue us-
ing the MLP-based upsampling method is that it produces
spikes and noise on a surface. This can also be seen in the
results obtained using METRO that uses the linear layer up-
sampling method. To solve this issue we incorporate Taubin
smoothing [9] in the network. Taubin smoothing is per-
formed using a uniform Laplacian for 10 iterations with its
parameters set to λtaubin = 0.5 and µtaubin = −0.53. As
shown in Fig. 4, these spikes can be removed to an almost
negligible range by applying Taubin smoothing.

Figure 3. Comparison between upsampling layers.

2.5. Comparison between different mesh down-
sampling levels

Figure 5 compares the results using different number of
queries (445, 1737 and 6904). Overall, the results obtained
using different number of queries do not show large dif-
ferences in recovered poses as shown in Fig. 5 top. On the
other hand, using more queries, recovered surfaces are more
favorable on some poses with large flexions and extensions
of arms, which shows less shrinking around arms (Fig. 5
bottom).

3. Visualization of attention patterns
3.1. Block sparse self-attention

Figure 7 shows sparse attention patterns and their block
sparsity patterns in different mesh resolutions. By combin-
ing joint-to-joint, joint-to-vertex, vertex-to-joint and vertex-
to-vertex connectivity patterns, nonzero block densities can
be reduced up to 4.2% (the third column). Using the ap-
proximate minimum degree algorithm (AMD) further re-
duces the density of nonzero blocks by 40-50% from when
without AMD (the fourth column).

3.2. MS deformable cross attention

In Fig. 6, we plot the sampling points and attention
weights from feature maps of different resolutions in one
picture corresponding to each joint query. The sampling



Figure 4. Taubin smoothing can remove surface spikes and noise.

points are relatively concentrated around the joint corre-
sponding to the query but are also somewhat scattered
around it. This allows us to capture non-local interactions
between image points and mesh points efficiently.

4. More qualitative results
More qualitative results are shown in Fig. 11.

5. Limitations
One of the limitations of our work is that, as with other

human mesh recovery techniques, it is difficult for our
method to reconstruct body shapes for the body styles that
are extremely different from SMPL labels, such as the cases
of children in Fig. 12.

Acknowledgement
The author would like to thank Louise Allain and Chun-

Kwang Tan for proofreading.

References
[1] Junhyeong Cho, Kim Youwang, and Tae-Hyun Oh.

Cross-attention of disentangled modalities for 3d hu-

man mesh recovery with transformers. In ECCV,
2022. 1, 2, 3, 5

[2] Jimei Yang Bryan Russel Max Argus Christian Zim-
mermann, Duygu Ceylan and Thomas Brox. Frei-
hand: A dataset for markerless capture of hand pose
and shape from single rgb images. In IEEE Interna-
tional Conference on Computer Vision (ICCV), 2019.
1

[3] Nikos Kolotouros, Georgios Pavlakos, Michael J
Black, and Kostas Daniilidis. Learning to reconstruct
3d human pose and shape via model-fitting in the loop.
In ICCV, 2019. 1, 2

[4] Nikos Kolotouros, Georgios Pavlakos, and Kostas
Daniilidis. Convolutional mesh regression for single-
image human shape reconstruction. In CVPR, 2019.
1, 2, 3

[5] Kevin Lin, Lijuan Wang, and Zicheng Liu. End-to-end
human pose and mesh reconstruction with transform-
ers. In CVPR, 2021. 1, 2, 3, 5

[6] Kevin Lin, Lijuan Wang, and Zicheng Liu. Mesh
graphormer. In ICCV, 2021. 1, 2, 3, 5

[7] Shilong Liu, Feng Li, Hao Zhang, Xiao Yang, Xian-
biao Qi, Hang Su, Jun Zhu, and Lei Zhang. DAB-
DETR: Dynamic anchor boxes are better queries for
DETR. In International Conference on Learning Rep-
resentations, 2022. 3

[8] Anurag Ranjan, Timo Bolkart, Soubhik Sanyal, and
Michael J Black. Generating 3d faces using convolu-
tional mesh autoencoders. In ECCV, pages 704–720,
2018. 3

[9] Gabriel Taubin, Tong Zhang, and Gene Golub. Opti-
mal surface smoothing as filter design, volume 1064
of LNCS, pages 283–292. 1996. 3

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. Attention is all you need.
In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, editors,
NeurIPS, volume 30, 2017. 3

[11] Hongwen Zhang, Yating Tian, Xinchi Zhou, Wanli
Ouyang, Yebin Liu, Limin Wang, and Zhenan Sun.
Pymaf: 3d human pose and shape regression with
pyramidal mesh alignment feedback loop. In ICCV,
2021. 1, 2

[12] Xizhou Zhu, Weijie Su, Lewei Lu, Bin Li, Xiaogang
Wang, and Jifeng Dai. Deformable detr: Deformable
transformers for end-to-end object detection. In ICLR,
2021. 2, 3



Table 6. Comparison of mesh transformer approaches using different backbones. Num. of vertex/joint queries are 431 and 14, respectively.

Method Epochs Input size Feat. resolution Backbone
Backbone H36M MPJPE ↓ #Params Inference

Pre-train dataset (PA-MPJPE ↓) Total / Backbone FPS

METRO [5]

200 224× 224 1 ResNet50 ImageNet 56.5 (40.6) 125.8M / 23.5M 32
200 224× 224 1 HRNet-w40 ImageNet 55.9 (38.5) 159.8M / 57.5M —
200 224× 224 1 HRNet-w64 ImageNet 54.0 (36.7) 230.4M / 128.1M 14
50 224× 224 1 ResNet50 ImageNet 58.3 (42.2) 125.8M / 23.5M 32
50 224× 224 1 ResNet50 MPII 58.5 (42.8) 125.8M / 23.5M 32
50 256× 192 1 HRNet-w48 COCO 48.9 (35.8) 165.2M / 63.6M 16

Graphormer [6] 200 224× 224 {7, 1} HRNet-w64 ImageNet 51.2 (34.5) 226.5M / 128.1M 14

FastMETRO [1]
60 224× 224 7 ResNet50 ImageNet 53.9 (37.3) 48.4M / 23.5M 35
60 224× 224 7 HRNet-w64 ImageNet 52.2 (33.7) 153.0M / 128.1M 14
50 256× 256 {64,64} Hourglass×4 MPII 54.7 (39.2) 32.7M / 2.7M 25
50 224× 224 {28,14,7,1} ResNet50 ImageNet 57.5 (41.1) 54.5M / 23.5M 41
50 224× 224 {56,28,14,7,1} ResNet50 MPII 54.5 (39.1) 54.5M / 23.5M 41

DeFormer
50 224× 224 {56,28,14,7,1} ResNet50 COCO 50.7 (36.3) 54.5M / 23.5M 41
50 224× 224 {28,14,7,1} HRNet-w32 MPII 49.9 (35.7) 58.3M / 28.5M 21
50 224× 224 {56, 28,14,7,1} HRNet-w32 MPII 49.5 (34.8) 58.3M / 28.5M 21
50 256× 192 {32,16,8,1} HRNet-w48 COCO 46.6 (33.1) 93.5M / 63.6M 18
50 256× 192 {64,32,16,8,1} HRNet-w48 COCO 44.8 (31.6) 93.5M / 63.6M 18
50 384× 288 {48,24,12,1} HRNet-w48 COCO 51.4 (36.4) 93.5M / 63.6M 15
50 384× 288 {64,48,24,12,1} HRNet-w48 COCO 43.7 (30.7) 93.5M / 63.6M 15



Figure 5. Comparison between results with different mesh down-sampling levels (number of queries).



Figure 6. Visualization of multi-scale deformable cross attentions. For each joint query, we plot the sampling points and attention weights
from feature maps of different resolutions in one picture. Each sampling point is marked as a filled circle with its color indicating attention
weight for that point.



Figure 7. Visualization of block sparse attention patterns for different vertex query resolution.



Figure 8. Qualitative comparison with METRO.



Figure 9. Qualitative comparison with METRO.



Figure 10. Qualitative comparison with METRO.



Figure 11. More results on 3DPW.



Figure 12. Results on COCO children images.


	. Additional evaluation results
	. Qualitative comparison against METRO lin2021end-to-end
	. 2D keypoint detection on COCO dataset
	. Generalization to hand mesh recovery
	. Accuracy across iterations 
	. More comparisons on transformer approaches

	. Additional ablation
	. Memory efficiency 
	. Initial query encoding
	. Query and reference point refinement
	. Comparison of upsampler
	. Comparison between different mesh down-sampling levels

	. Visualization of attention patterns
	. Block sparse self-attention
	. MS deformable cross attention

	. More qualitative results 
	. Limitations

