
A. More Literature Review
Efficient ViTs. As previously mentioned in Sec. 2, effi-

cient attention can be roughly categorized into two groups:
local attention [2, 38, 56, 58] or kernel-based linear atten-
tion [1, 5, 6, 14, 29, 37, 39, 43, 66]. For local attention,
Swin [38] restricts the window size of self-attention, so
that only neighboring tokens will perform similarity mea-
surements each other instead of all tokens; MaxViT [56]
also adopts block attention within windows but addition-
ally takes dilated global attention into account for learning
both local and global information; QnA [2] shares the at-
tention queries among all tokens; Linformer [58] approxi-
mates the queries and keys with low-rank factorization to
reduce their vector length. For kernel-based linear atten-
tion, XCiT [1] proposes a “transposed” version of self-
attention that operates across feature channels rather than
tokens, resulting in linear complexity with the number of
tokens; Linformer [58] explores a low-rank matrix to ap-
proximate the self-attention; Reformer [32] replaces self-
attention by one that uses locality-sensitive hashing, chang-
ing its complexity from O(n2) to O(n log(n)) where n de-
notes the number of tokens; Longformer [3] combines a
windowed local-context self-attention and a task-motivated
global attention that encodes inductive bias about that task;
Nystromformer [66] adapts the Nystrom method to approxi-
mate standard self-attention with O(n) complexity; Scatter-
brain [8] unifies both low-rank approximation and sparse at-
tention to improve accuracy-efficiency tradeoffs. Different
from all above works, we explore from a new perspective
by taking spectral angles into consideration when measur-
ing the similarity among tokens, resulting in linear-angular
attention with sparse training techniques that can achieve
comparable or even better performance than softmax-based
attention.

ViTs for Downstream Tasks. Apart from image clas-
sification tasks, ViTs have also been leveraged to serve
as backbones for downstream tasks, such as object detec-
tion [7,34,60,74,77] and semantic segmentation [11,12,42].
For example, DETR [7] directly detects and predicts objects
by combining a common CNN with a transformer architec-
ture; Maskformer [12] proposes to use a simple mask clas-
sification model to predict a set of binary masks, each as-
sociated with a single global class label prediction. One
big difference is that ViTs can beat CNNs on classifica-
tion tasks that have a lower image resolution while are still
less efficient than lightweight CNNs on downstream tasks
that heavily rely on multi-scale resolution features. There-
fore, there have been various debates on designing power-
ful ViT backbones: (1) plain ViTs (e.g., ViTDet [33]) or
hierarchical ViTs (e.g., MViTv2 [34], or Swin [38])? Plain
ViTs win in terms of simplicity but could be hard to scale
down to lower resolution and computation regimes; Hier-
archical ViTs seamlessly match with feature pyramid net-

works (FPNs) for extracting multi-scale feature maps but
have more design factors to be considered or searched over.
(2) pure ViTs or hybrid CNN-ViTs? Pure ViTs are compat-
ible with self-supervised masked autoencoder (MAE) pre-
training [25]; Hybrid CNN-ViTs can suffer from the infor-
mation leakage problem [22] when adopting MAE pretrain-
ing, while being more efficient especially for feature extrac-
tions in early layers. Our proposed method does not fall into
the aforementioned debates. Instead, it is compatible with
all ViT variants relying on the softmax-based attention.

B. More Results and Clarification
Improvement from Our Training Recipe. Recall that

in Sec. 4, we conduct experiments on three classical com-
puter vision tasks. For object detection and semantic seg-
mentation, we follow the baseline’s training recipe for a
fair and direct comparison. For the image classification, our
training recipe has a minor difference due to the increased
batch size and training epochs with more GPU nodes. As
such, we further provide the detailed improvement break-
down here. Specifically, our adopted training recipe leads
to ↑0.2% ∼ ↑1.6% top-1 accuracy improvements and our
Caslting-ViT further reduces up to ↓40% MACs and in-
creases ↑0.1% ∼ ↑1.2% top-1 accuracy simultaneously.

Ablation Studies on Image Classification. Our abla-
tion studies are mostly done on the detection task as shown
in Sec. 4.4 because of its less training time as compared to
training ImageNet. Note that for these ablation studies, we
do not adopt pretraining on ImageNet as specified in Sec.
4.4. After finishing the trial-and-error and when it comes to
comparing with SOTA works, we then pretrain final models
with the training recipe the same as LeViT [24], resulting in
final results in Tab. 3. According to our experiments, train-
ing ImageNet takes nearly one week, while training COCO
without pretraining on ImageNet takes only one day. In
fact, ablation results on the classification task are consis-
tent. To deliver more comprehensive ablation studies, we
train Castling-LeViT-256 on ImageNet afterwards and find
that: (1) + Lin.: 81.5%; (2) + Lin. & DWConv: 82.4%; (3)
+ Lin. & DWConv & SparseAttn: 82.6%, those results are
consistent with our observation on detection experiments.

Conjecture of Why Linear-Angular Attention Some-
times Beats the Original Self-Attention. To better under-
stand why the result of our Castling-ViT is even better than
softmax-based ViTs. We summarize three differences be-
tween our method and previous linear attentions: (1) In ad-
dition to linear attention, we also take DWConv and sparse
softmax-based attention into the training process; (2) We
use a SGD optimizer instead of Adam, which is not com-
mon for training ViTs. Although Adam optimizer leads to
faster convergence, we find that SGD optimizer helps to de-
liver better results if being trained sufficiently converged,
e.g., we train 1000 epochs on ImageNet; (3) After revisit-



Table 8. Throughputs/memory measurements on a V100 for image classification, under various input resolutions denoted as r × r.

Model
Throughputs (Images/s) GPU Peak Memory (MB)

r = 512 r = 1024 r = 1536 r = 512 r = 1024 r = 1536
DeiT-Base 40 6 OOM 1220 12369 OOM

Castling-DeiT-Base 48 (↑20%) 8 (↑33%) 6 998 (↓18%) 4863 (↓61%) 15478
MViTv2-Base 43 5 OOM 1762 14686 OOM

Castling-MViTv2-Base 50 (↑16%) 10 (↑100%) 4 1483 (↓16%) 7028 (↓52%) 16028

Table 9. Ablation study on the patch size (measured on a V100).

Models
Throughputs (Images/s) under p patch sizes

p = 8 p = 4 p = 2
DeiT-Tiny 398 40 3

Castling-DeiT-Tiny 410 (↑1.0×) 103 (↑2.6×) 20 (↑6.7×)
DeiT-Base 60 8 OOM

Castling-DeiT-Base 64 (↑1.1×) 15 (↑1.9×) 4

ing the attention design, we remove token/feature pooling
and adopt post-Q pooling and residual connections [34] in
our attention blocks. All above three differences contribute
to the the final accuracy apart from the improvement of us-
ing linear-angular attention. We also show the breakdown
analysis for each of these three points, see Sec. 4.4, Sec. B,
and Sec. 3.1 for detailed analysis, respectively.

Actual Latency, Throughputs, and Memory Mea-
surements. Our final models are dense and thus well com-
patible with GPUs. We measure and report the latency
(↓55%), throughputs (↑16 ∼ ↑100%), and GPU memory
(↓16 ∼ ↓61%) for both classification and detection tasks,
as shown in Tab. 8/10. For throughputs, we measure both
our Castling-ViT and baselines under their maximum al-
lowed batch sizes (bs), i.e., bs=16/2/1, for different input
resolutions r=512/1024/1536 in a fair and consistent V100
environment. Note that when the input resolution r=224,
our models cannot beat the baseline in terms of throughputs
because of (1) the newly added DWConv; (2) the removal
of token/feature pooling. However, in terms of accuracy-
efficiency tradeoffs, our Castling-ViT consistently beats all
baselines as shown in Sec. 4. For memory, we record the
peak memory per image. For latency, we benchmark with
SOTA CNN-based detectors. Our model achieves 37.3mAP
at 3.9ms latency on a V100, while YOLOv5-S only achieves
36.7mAP at 8.7ms latency). Moreover, Castling-ViT wins
more throughputs (up to ↑6.7×) for smaller patch sizes
and/or larger input resolutions, as shown in Tab. 9 and 8.
Note that we record CUDA latency following the litera-
ture [38, 54]. All reported results are averaged among three
runs.

Compare with ViT-based Baselines on Detection. We
benchmark with SOTA CNN-based detectors under 6G
MACs in Sec. 4 because that ViT-based detectors are too ex-
pensive. For example, our Castling-ViT achieves 37.3mAP
at 5.3G MACs, while RetinaNet+PVT-Tiny only achieves
36.7mAP at even 221G MACs [59], as shown in 10.

Table 10. Latency measurements on a V100 for object detection.

Models Params
(M)

MACs
(G) mAP Latency

(ms)
YOLOv5-S 7.3 17.1 36.7 8.7 [23]

RetinaNet+PVT-Tiny [59] 23.0 221 36.7 -
Castling-ViT-L-416 13.1 5.3 37.3 3.9 (↓55.2%)

Advantages of Angular Kernels? Angular kernels take
into account extra spectral characteristics and enjoy good
properties, e.g., positive semi-definite function → inner
product in a high-dimensional and rich feature space, as an-
alyzed in Sec. 3.2. It also achieves comparable accuracy
with vanilla attention as validated by Sec. 4.

Large-Scale Ablation Studies on Attention Design.
We use small ViTs for idea validation in Tab. 5 and the
conclusion generalizes to larger ones. Here we add another
ablation study on a larger model LeViT-384 as shown in
Tab. 11, from which we see that the attention design in-
sights consistently generalize from small models to larger
models, further validating our design insights.

Why More Parameters Than Others in Low MACs?
ViTs tend to have more parameters than CNNs under small
MACs, e.g., LeViT [24] and Efficient-ViT [6]. For the
LeViT, it features more layers with gradually downsam-
pled input resolutions. For example, LeViT-256 requires
18.9M parameters at only 1.1G MACs, LeViT-384 requires
39.1M parameters at 2.4G MACs. Since we adopt LeViT-
like structure to construct our Castling-ViT on image clas-
sification tasks, the parameter looks higher than other else
baselines. Also, as indicated in Sec. 3.1, Castling-LeViT
uses merely post-Q pooling, causing slightly higher hid-
den dimensions for Q/K than LeViT. In this work, we fo-
cus more on the FLOPs/latency instead of parameters since
storage is not a major concern in modern hardware [48].

Will Auxiliary Attention and DWConv Work for Ex-
isting Linear Attentions? Yes, we train a DeiT-Tiny (w/o
distill.; Acc.: 72.2%) w/ linear attention [17] for 300 epochs
and observe that: (1) + Lin.: 68.3%; (2) + Lin. & DWConv:
71.7%; (3) + Lin. & SparseAttn: 70.2%; (4) + Lin. & DW-
Conv & SparseAttn: 72.4%.

Clarify ReLU-S vs. ReLU-E in Tab. 5. During ap-
proximation, i.e., Sim(Q,K) ≈ ϕ(Q)ϕ(K)T , both of them
use ReLU as ϕ(·), but ReLU-S takes the whole Softmax
as Sim(·), while ReLU-E takes the Exp(·) as Sim(·), e.g.,



Table 11. Additional ablation studies on attention designs using
LeViT-384 on ImageNet.

Pooling
Residual Q MACs (G) Top-1 Accuracy (%)Token Feat. Pre-Q Post-Q

! ! 2.50 82.63
! ! 2.36 82.55

! 2.61 82.65
! ! ! 2.83 82.19

! ! ! 2.80 81.86
! ! 2.96 83.65

Efficient-ViT, resulting in additional divisions.


