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In this supplementary material, we first introduce the
general sparse attention operator in Section 1. In Section 2,
we provide some details about our experiment. In Section 3,
we show additional visualizations about the spot-guided at-
tention and adaptive scaling modules.
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Figure 1. The illustration of our general sparse attention operator.

1. General Sparse Attention Operator

Due to irregular key/value token number for each query
in Spot Attention, the naive implementation by PyTorch [7]
is not efficient for memory and computation, which uses a
mask to set unwanted values in the attention map to 0. More
generally, the same problem also exists when the numbers
of key corresponding to queries are not the same. Inspired
by PointNet [8] and Stratified Transformer [4], we imple-
ment a general sparse attention operator using CUDA that is
efficient in terms of memory and computation. We attempt
to only compute the necessary attention between much less
query/key tokens.

We can divide a vanilla attention operator into 3 steps.
Inputs are grouped as query Q, key K and value V . First,
the attention map A is computed by dot production as
A = QKT . Then, a softmax operator is performed on the
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attention map: As = softmax(A/
√
dk). Finally, the up-

dated query O can be obtained by O = AsV . We optimize
these three steps separately.

In the step 1, because only a few results in A are use-
ful for sparse attention, we do not need to compute the full
A. Instead, we compute the dot productions between Lm

pairs of query and key. Mq and Mk record the indexes of
query and key tokens whose dot productions are needed.
The length of Mq and Mk are both Lm. Here, we denote
the sparse attention map as attn, which is calculated by

attn[i] = Q[Mq[i]]K[Mk[i]]
T , i = 0, 1, · · · , Lm−1. (1)

In the step 2, we group the elements in attn with the
same query index and apply softmax on each group. The
result is denoted as attns.

In the step 3, we compute the updated query

O[q] =
∑

Mq [i]=q

attns[i] · V [Mk[i]]. (2)

All of three steps are implemented in CUDA.
Compared with the naive implementation using Py-

Torch [7], our highly optimized implementation reduces the
memory and time complexity from O(Nq · Nk · Nh · N2

d )
to O(Lm · Nh · N2

d ), where Nq , Nk and Nh are sepa-
rately the numbers of query tokens, key tokens and attention
heads, and Nd is the dimension of each head. Considering
Lm ≪ Nq ·Nk, our implementation is much more efficient
than the naive implementation.

In particular, we also calculate the matching matrix in
spot-guided attention in this way and set the probability of
unrelated pixels to 0, which can greatly reduce the memory
and computation cost.

2. Experimental Details
2.1. Training Details

To reduce the GPU memory, we randomly sample 50%
of ground truth matches to supervise the matching matrix
at the coarse stage. And we sample 20% of the maximum
number of coarse-level possible matches at the fine stage.
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Figure 2. Learning rate curve while training on MegaDepth [5].

We train ASTR on MegaDepth [5] for 15 epochs. The initial
learning rate is 1× 10−3, with a linear learning rate warm-
up for 15000 iterations. The learning rate curve is shown in
Figure 2.

2.2. Differences between Baseline and LoFTR

There are two main differences between our baseline and
LoFTR [9].

(1) Normalized Positional Encoding. LoFTR [9]
adopts the absolute sinusoidal positional encoding by fol-
lowing [1]:

PEi(x, y) =


sin(wk · x), i = 4k
cos(wk · x), i = 4k + 1
sin(wk · y), i = 4k + 2
cos(wk · y), i = 4k + 3

, (3)

where wk = 1
100002k/d , d denotes the number of feature

channels and i is the index for feature channels. Consider-
ing the gap in image resolution between training and testing,
we utilize the normalized positional encoding as [2], which
is proven to mitigate the impact of image resolution changes
in [2]. The normalized positional encoding NPEi(·, ·) can
be expressed as

NPEi(x, y) = PEi(x ∗ Wtrain

Wtest
, y ∗ Htrain

Htest
), (4)

where Wtrain/test and Htrain/test are width and height of
training/testing images.

(2) Convolution in Attention. Chen et al. [2] find that
replacing the self attention with convolution can improve
the performance. Hence, we deprecate self attention and
MLP, and utilize a 3× 3 convolution in our ASTR.

2.3. CNN Backbone

Here we leverage a deepened version of Feature Pyramid
Network (FPN) [6], which achieves a minimum resolution
of 1/32. The initial dimension for the stem is still 128 as
LoFTR [9], and the number of feature channels for subse-
quent stages is [128, 196, 256, 256, 256].
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Figure 3. Visualizations of vanilla and spot-guided attention maps
on MegaDepth [5] (outdoor) and ScanNet [3] (indoor).

3. Visualization Results

In Figure 3, we pick up two similar adjacent pixels as
queries and visualize the corresponding attention maps of
vanilla and our spot-guided attention for comparison. The
vanilla attention mechanism is vulnerable to repetitive tex-
tures, while our spot-guided attention can focus on the cor-
rect areas in these repeated texture regions. Because large
scale variation occurs frequently on outdoor datasets, we



Figure 4. Visualizations of grids from adaptive scaling module and
corresponding depth maps on MegaDepth [5]. Note that we use
depth values with scale uncertainty to compose the depth maps.

mainly visualize the grids from the adaptive scaling mod-
ule and corresponding depth maps on MegaDepth [5]. As
shown in Figure 4, our adaptive scaling module can adjust
the size of grids according to depth information.
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