
Block Selection Method for Using Feature Norm in

Out-of-distribution Detection

(Supplementary Material)

1 Details of the training and in-distribution accuracy

We utilize the ResNet18(He, Zhang, Ren, & Sun, 2016), WRN28(Zagoruyko & Komodakis, 2016),
VGG11(Simonyan & Zisserman, 2014). Here, we provide details of training those architectures on CI-
FAR10(Krizhevsky, Hinton, et al., 2009).

1.1 Training for CIFAR10

To train the model for cifar10, we use the following setting for each architecture:

• ResNet18: We use the same hyperparameter setting as in Sun, Guo, and Li (2021). The model
is trained for 100 epochs using the SGD optimizer with a momentum of 0.9 and weight decay of
5 × 10−4. The initial learning rate is 0.1 and decays by a factor of 10 at epochs 50, 75, and 90.
Also, we use batch size 128.

• WRN28: We use the same hyperparameter setting as in Hsu, Shen, Jin, and Kira (2020). The
model is trained for 200 epochs using the SGD optimizer with a momentum of 0.9, weight decay of
5× 10−4, and 128 batch size. The initial learning rate is 0.1 and decays by a factor of 10 at epochs
100, 150.

• VGG11: The model is trained for 100 epochs using the SGD optimizer with a momentum of 0.9
and weight decay of 5×10−4. The initial learning rate is 0.05 and decays by a factor of 10 at epochs
50, 75, and 90. Also, we use batch size 128.

The in-distribution accuracy of the models trained for CIFAR10 is tabulated in Table 1:

Iteration ResNet18 WRN28 VGG11

1 94.62 95.73 91.08
2 94.54 96.07 90.96
3 94.96 95.84 90.72
4 94.29 95.98 90.89
5 94.37 96.03 91.15

Average 94.556 95.93 90.96

Table 1: In-distribution accuracy of models trained for CIFAR10.

1.2 Training for ImageNet

We utilize the model for ImageNet provided by torchvision of pytorch. For ResNet50(He et al., 2016),
the model is trained for 90 epochs using the SGD optimizer with a momentum of 0.9 and weight decay
of 1× 10−4. The initial learning rate is 0.1 and decays by a factor of 10 at epochs 30, 60. Batch size of
32 is used. Also, VGG16(Simonyan & Zisserman, 2014) use the same setting except the initial learning
rate is 0.01. Finally, the MobileNetV3(Howard et al., 2019) is trained for 600 epochs using the RMSprop
optimizer with a weight decay of 0.00001. The initial learning rate is 0.064 and decays by 0.973 at every 2
epochs. The more training details can be found at: https://pytorch.org/vision/stable/index.html.
In particular, we use the torchvision version of 0.12.0

1

https://pytorch.org/vision/stable/index.html


2 Details of the baseline

We compare our method with OOD detection methods: MSP(Hendrycks & Gimpel, 2017), ODIN(Liang,
Li, & Srikant, 2018), Energy(Liu, Wang, Owens, & Li, 2020), Energy+ReAct(Sun et al., 2021), En-
ergy+DICE(Macêdo, Ren, Zanchettin, Oliveira, & Ludermir, 2021), The details of the methods are as
follows:

• MSP. Hendrycks and Gimpel (2017) propose to use maximum softmax probability to detect OOD
samples. Then, the in-distribution (ID) score s is calculated as follows:

s = max
i

exp(vi)∑K
k exp(vk)

,

where vi,K refer to the i-th logit, the number of classes, respectively.

• ODIN. Lian Liang et al. (2018) propose to use maximum softmax probability to detect OOD sam-
ples with temperature scaling and input perturbation. In all experiments, we set the temperature
scaling parameter T = 1000 and the perturbation parameter ε = −0.0004. Therefore, the ID score
s is calculated as follows:

s = max
i

exp(vi/T )∑K
k exp(vk/T )

,

where vi refers to the i-th logit that calculated with perturbated input.

• Energy. Liu et al. (2020) propose to use energy score to detect OOD samples. The energy function
calculate energy from logit as follows:

s = − log

K∑
k

exp(vi(x)).

In the experiments, Energy is utilized using the standard network.

• Energy+ReAct. Sun et al. (2021) propose to use energy score or maximum softmax probability to
detect OOD samples with clipped activation using ReAct operation. The ReAct operation calculate
the clipped activation fReAct as follows:

fReAct = min(fi, c),

where fi, c refer to the i-th element of original feature vector f and activation truncation threshold.
After the ReAct operation is calculated, energy score is calculated with clipped activation fReAct.
In the experiments, Performance of the ReAct is chosen as the best result between the 70% clip or
90% clip.

• Energy+DICE Sun and Li (2022) propose to use energy score with output that is derived by
selectively using the most salient weight. They measure the saliency of the feature vector by define
a contribution matrix V ∈ Rm×C , where each column vc is given by:

vc = Ex∈D[wc � h(x)],

where � refers to the element-wise multiplication, and wc refers to the c-th class weight vector.
Also, m and (x) refer to the feature dimension and feature vector. Then, an element of V intuitively
measures the contribution of the elements of the feature vector to each class. Finally, top-k weights
can be selected based on the k-largest elements in V . Then, the model output is calculated by

fDICE(x; θ) = (M �W )>h(x),

where M is a masking matrix, which returns a matrix by setting 1 for entries corresponding to the
k largest elements in V and setting other elements to 0. There is hyperparameter p which is used
for how much elements is remained for calculating output. As well as done in Energy+ReAct, we
select the best result between results of p = 70% and p = 90%.

2



3 Details of the block selection

In this section, we provide the details about the block selection method using the NormRatio calculated
by the training images and the pseudo images generated from training images. First, we provide the
description and the NormRatio of the block for each architecture in Table 2, 3, 4, 5, 6, and 7. The
NormRatio we provided is calculated using the Jigsaw puzzle images as pseudo OOD.

3.1 Summary of the block for each architecture

Block Num Channel dimension Output size Structure NormRatio

1
64 32x32

[Conv-BN-ReLU] x 2 0.83
2 [Conv-BN-ReLU] x 2 0.85
3

128 16x16
Shortcut+[Conv-BN-ReLU] x 2 0.81

4 [Conv-BN-ReLU] x 2 0.85
5

256 8X8
Shortcut+[Conv-BN-ReLU] x 2 0.93

6 [Conv-BN-ReLU] x 2 1.02
7

512 4x4
Shortcut+[Conv-BN-ReLU] x 2 1.11

8 [Conv-BN-ReLU] x 2 0.97

Table 2: Summary of the block in ResNet18 that trained for CIFAR10. The NormRatio is averaged over
5 runs.

Block Num Channel dimension Output size Structure NormRatio

1

160 32x32

[BN-ReLU-Conv]x2 0.83
2 [BN-ReLU-Conv]x2 0.87
3 [BN-ReLU-Conv]x2 0.89
4 [BN-ReLU-Conv]x2 0.90

5

320 16x16

Shortcut + [BN-ReLU-Conv]x2 0.95
6 [BN-ReLU-Conv]x2 0.94
7 [BN-ReLU-Conv]x2 0.98
8 [BN-ReLU-Conv]x2 0.99

9

640 8X8

Shortcut + [BN-ReLU-Conv]x2 1.04
10 [BN-ReLU-Conv]x2 1.16
11 [BN-ReLU-Conv]x2 1.36
12 [BN-ReLU-Conv]x2 1.28

Table 3: Summary of the block in WRN28 that trained for CIFAR10. The NormRatio is averaged over
5 runs.

Block Num Channel dimension Output size Structure NormRatio

1 64 32x32 Conv-ReLU 0.87

2 128 16x16 MaxPool-Conv-ReLU 0.85

3
256 8x8

MaxPool-Conv-ReLU 0.98
4 Conv-ReLU 0.94

5
512 4x4

MaxPool-Conv-ReLU 1.47
6 Conv-ReLU 1.77

7
512 2x2

MaxPool-Conv-ReLU 1.56
8 Conv-ReLU 1.48

Table 4: Summary of the block in VGG11 that trained for CIFAR10. The NormRatio is averaged over
5 runs.

3



Block Num Channel dimension Output size Structure NormRatio

1
256 56x56

Shortcut+[Conv-BN-ReLU] x 3 0.98
2 [Conv-BN-ReLU] x 3 0.98
3 [Conv-BN-ReLU] x 3 0.98

4

512 28x28

Shortcut+[Conv-BN-ReLU] x 3 0.95
5 [Conv-BN-ReLU] x 3 0.95
6 [Conv-BN-ReLU] x 3 0.94
7 [Conv-BN-ReLU] x 3 0.95

8

1024 14x14

Shortcut+[Conv-BN-ReLU] x 3 0.96
9 [Conv-BN-ReLU] x 3 0.96
10 [Conv-BN-ReLU] x 3 0.97
11 [Conv-BN-ReLU] x 3 0.98
12 [Conv-BN-ReLU] x 3 0.98
13 [Conv-BN-ReLU] x 3 0.95

14
2048 7x7

Shortcut+[Conv-BN-ReLU] x 3 0.98
15 [Conv-BN-ReLU] x 3 1.04
16 [Conv-BN-ReLU] x 3 0.93

Table 5: Summary of the block in ResNet50 that trained for ImageNet and provided by PyTorch.

Block Num Channel dimension Output size Structure NormRatio

1
64 224x224

Conv-ReLU 0.95
2 Conv-ReLU 0.91
3

128 112x112
MaxPool-Conv-ReLU 0.89

4 Conv-ReLU 0.88
5

256 56x56
MaxPool-Conv-ReLU 0.87

6 Conv-ReLU 0.87
7 Conv-ReLU 0.86
8

512 28x28
MaxPool-Conv-ReLU 0.84

9 Conv-ReLU 0.86
10 Conv-ReLU 0.88
11

512 14x14
MaxPool-Conv-ReLU 0.96

12 Conv-ReLU 1.00
13 Conv-ReLU 1.13

Table 6: Summary of the block in VGG16 that trained for ImageNet and provided by PyTorch.

Block Num Channel dimension Output size Structure NormRatio

1 16 112x112 Conv-BN-HS 1.15
2 16 112x112 [Conv-BN-ReLU]+Conv-BN 1.15
3

24 56x56
[Conv-BN-ReLU]x2+Conv-BN 1.21

4 [Conv-BN-ReLU]x2+Conv-BN 1.14
5

40 28x28
[Conv-BN-ReLU]x2+SE+Conv-BN 1.00

6 [Conv-BN-ReLU]x2+SE+Conv-BN 1.00
7

40 28x28
[Conv-BN-ReLU]x2+SE+Conv-BN 1.06

8 [Conv-BN-HS]x2+Conv-BN 1.09
9 80 14x14 [Conv-BN-HS]x2+Conv-BN 1.06
10 80 14x14 [Conv-BN-HS]x2+SE+Conv-BN 1.05
11 80 14x14 [Conv-BN-HS]x2+SE+Conv-BN 1.04
12 112 14x14 [Conv-BN-HS]x2+SE+Conv-BN 1.04
13 112 14x14 [Conv-BN-HS]x2+SE+Conv-BN 0.99
14 160 7x7 [Conv-BN-HS]x2+SE+Conv-BN 1.02
15 160 7x7 [Conv-BN-HS]x2+SE+Conv-BN 1.02
16 160 7x7 [Conv-BN-HS]x2+SE+Conv-BN 1.18
17 960 7x7 Conv-BN-HS 1.37

Table 7: Summary of the block in MobilNetV3 large that trained for ImageNet and provided by PyTorch.

4



4 Ablation of pseudo OOD generation

We use Jigsaw images as pseudo OOD for calculating the NormRatio. However, we may use different
pseudo OOD images that can be directly generated from in-distribution images (e.g., blurred images or
vertical flipped images) or can be easily obtained (e.g., gaussian noise images). Thus, we show NormRatio
for each pseudo OOD image. In Table 8, we show the NormRatio of each block in WRN28 for given
various pseudo OOD: Blurred training samples (Blur), Vertically flipped training samples (Vertical flip),
2x2 Jigsaw puzzle images (Jigsaw 2x2), 3x3 Jigsaw puzzle images (Jigsaw 3x3), 9x9 Jigsaw puzzle images
(Jigsaw 9x9), and Gaussian noise. Also, the similar pseudo OOD generation methods: ATOM(Chen, Li,
Wu, Liang, and Jha (2021)) and CNC(Hebbalaguppe, Goshal, Prakash, Khadilkar, and Arora (2022))
are utilized.

We find that the blurred images can produce the highest NormRatio in the shallow block because
blurred images have fewer low-level abstraction (i.e., lowly activate filters in the shallow block) and similar
high-level abstraction compared to original image. Also, we find that the vertically flipped images act
similarly to Jigsaw puzzle images since they also have similar low-level abstraction and different high-level
abstraction compared to training samples. Finally, we find that the Gaussian noise images highly activate
the shallow block, while lowly activate the deeper block. However, the standard deviation is very high
for the Gaussian noise, and the penultimate block, which is the best for OOD detection, may not be
selected.

Block Num Blur Vertical filp Jigsaw 2x2 Jigsaw 3x3 Jigsaw 9x9 Guassian noise ATOM CNC

1 1.57 ± 0.09 1.00 ± 0.00 0.96 ± 0.00 0.83 ± 0.01 0.74 ± 0.01 0.49 ± 0.02 1.02 ± 0.01 0.98 ± 0.02
2 1.72 ± 0.13 1.00 ± 0.00 0.96 ± 0.00 0.87 ± 0.01 0.77 ± 0.01 0.42 ± 0.03 1.03 ± 0.01 1.01 ± 0.02
3 2.19 ± 0.25 1.00 ± 0.00 0.95 ± 0.00 0.89 ± 0.00 0.76 ± 0.01 0.43 ± 0.02 1.01 ± 0.00 1.06 ± 0.03
4 2.51 ± 0.20 1.00 ± 0.00 0.95 ± 0.00 0.90 ± 0.00 0.77 ± 0.01 0.47 ± 0.02 1.01 ± 0.00 1.08 ± 0.02
5 1.71 ± 0.02 1.01 ± 0.00 0.96 ± 0.00 0.95 ± 0.01 0.94 ± 0.02 0.66 ± 0.02 1.04 ± 0.00 1.03 ± 0.01
6 1.79 ± 0.04 1.01 ± 0.00 0.96 ± 0.00 0.94 ± 0.01 0.98 ± 0.02 0.78 ± 0.04 1.05 ± 0.00 1.07 ± 0.01
7 1.17 ± 0.05 1.01 ± 0.00 0.98 ± 0.00 0.98 ± 0.01 1.01 ± 0.02 0.69 ± 0.04 1.04 ± 0.00 1.00 ± 0.01
8 1.21 ± 0.04 1.03 ± 0.04 0.99 ± 0.00 0.99 ± 0.01 1.01 ± 0.03 0.69 ± 0.05 1.05 ± 0.00 1.01 ± 0.01
9 1.78 ± 0.09 1.07 ± 0.00 1.02 ± 0.00 1.04 ± 0.02 1.10 ± 0.05 1.08 ± 0.09 1.13 ± 0.01 1.22 ± 0.02
10 1.79 ± 0.14 1.15 ± 0.01 1.09 ± 0.01 1.16 ± 0.02 1.22 ± 0.05 1.15 ± 0.19 1.19 ± 0.03 1.33 ± 0.02
11 2.03 ± 0.10 1.30 ± 0.02 1.24 ± 0.01 1.36 ± 0.02 1.39 ± 0.04 1.25 ± 0.22 1.39 ± 0.02 1.52 ± 0.01
12 1.76 ± 0.09 1.19 ± 0.01 1.15 ± 0.01 1.28 ± 0.01 1.34 ± 0.03 1.19 ± 0.19 1.27 ± 0.01 1.39 ± 0.02

Table 8: Ablation on pseudo OOD generation methods using WRN28. The results are average over five
runs.

5 Ablation of Lp-norm and fusing score

Architecture Method
OOD

SVHN Textures LSUN© LSUN® iSUN Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ResNet18

L2-norm 7.37 98.49 31.30 91.96 5.09 99.13 29.00 95.05 27.05 95.26 66.33 81.57 27.69 93.58
L1-norm 9.95 97.99 43.36 87.51 0.08 99.95 35.21 93.60 34.39 93.63 64.35 83.72 31.22 92.73
Lmax-norm 6.90 98.73 23.84 95.18 0.25 99.91 24.00 95.91 22.79 96.11 62.16 85.21 23.32 95.18
L2-norm of two blocks 4.28 99.18 22.89 94.83 0.18 99.90 19.26 96.85 17.28 97.16 62.61 86.06 21.08 95.66
L2-norm of three blocks 4.80 99.01 24.44 94.05 0.69 99.71 25.84 95.88 22.62 96.37 70.41 82.82 24.80 94.64

WRN28

L2-norm 3.83 99.18 14.23 97.06 0.32 99.81 8.13 98.32 5.98 98.71 48.69 90.91 13.53 97.33
L1-norm 26.11 95.68 31.05 91.86 0.42 99.85 10.55 98.00 8.13 98.38 49.30 90.46 20.92 95.71
Lmax-norm 2.93 99.42 10.38 97.89 1.19 99.59 11.21 97.86 8.21 98.37 52.11 89.83 14.34 97.16
L2-norm of two blocks 6.03 98.75 19.33 95.68 1.06 99.57 15.99 97.25 12.29 97.83 61.87 87.11 19.43 96.03
L2-norm of three blocks 13.26 97.52 30.92 91.88 1.67 99.54 36.71 94.03 30.15 95.07 73.53 80.58 31.04 93.10

Table 9: Ablation on Lp-norm and fusing score using ResNet18 and WRN28 architectures. The results
are average over five runs.

We use L2-norm in our study, but the other Lp-norm may perform better compared to L2-norm.
In this experiment, we utilize L1-norm and Lmax-norm to compare the OOD detection performance.
Also, we utilize the highest block using block selection method, but there can be an OOD detection
performance improvement when we use fusing score from various blocks. Thus, we select the two or three
highest blocks using block selection method, and we sum FeatureNorm from the selected blocks for the
OOD indicator. The Table 9 demonstrate the ablation results. We find that L2-norm achieved the best
results compared to L1-norm and Lmax-norm on WRN28 architecture. However, we find that Lmax-norm
achieved the best results compared to L1-norm and L2-norm on ResNet18 architecture. Also, using two

5



blocks achieved the better results compared to the original one on ResNet18, while it showed degraded
performance on WRN28 architecture. Moreover, using three blocks works poorly since it contains the
last block, which is overconfident about any inputs. Thus, we argue that using one block is the more
proper way to calculate FeatureNorm.

6 Comparison with recent OOD detection methods

Architecture Method
OOD

SVHN Textures LSUN© LSUN® iSUN Places365 Average

FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

ResNet18

FeatureNorm (ours) 7.13 98.65 31.18 92.31 0.07 99.96 27.08 95.25 26.02 95.38 62.54 84.62 25.67 94.36
RankFeat 57.16 83.54 55.71 82.94 27.40 93.57 69.07 77.19 70.20 75.96 85.97 64.34 60.92 79.59
TFEM 30.46 94.06 45.65 90.59 7.23 98.63 23.69 95.92 27.17 95.32 43.37 90.33 29.59 94.14
ViM 70.47 90.46 49.16 90.79 88.69 88.78 59.16 90.79 56.05 90.95 70.62 85.88 65.69 89.61
GradNorm 100.00 47.47 100.00 46.85 100.00 46.70 100.00 45.64 100.00 45.76 100.00 45.78 100.00 46.37

WRN28

FeatureNorm (ours) 3.83 99.18 14.23 97.06 0.32 99.81 8.13 98.32 5.98 98.71 48.69 90.91 13.53 97.33
RankFeat 90.04 80.72 92.79 72.54 97.67 72.19 89.99 76.75 89.77 76.92 83.60 79.74 90.64 76.48
TFEM 33.08 90.88 45.69 85.78 5.89 98.76 22.75 94.92 25.13 94.18 38.28 88.67 28.47 92.20
ViM 24.33 96.34 35.15 94.22 76.58 88.88 46.80 92.94 47.34 92.63 66.23 88.02 49.40 92.17
GradNorm 68.20 66.73 76.47 59.78 41.21 79.59 69.55 67.80 68.62 68.10 80.79 58.49 67.47 66.75

Table 10: Comparison with recent post-hoc OOD detection methods using ResNet18 and WRN28 archi-
tectures. The results are average over five runs.

We compare our method with more recent post-hoc OOD detection methods, which are RankFeat,
TFEM, ViM, GradNorm. RankFeat(Song, Sebe, & Wang, 2022) is a method that applies a refinement
strategy to feature vectors, which often have a larger dominant singular value for OOD data than for ID
data. The method removes the rank-1 matrix, composed of the largest singular value and its associated
singular vectors, from the high-level feature. After refinement, the energy score of the logit is used as the
OOD detection score. TFEM(Zhu et al., 2022) proposed the method of rectifying the feature into its
typical set and calculating the OOD score with the typical features to achieve reliable OOD detection.
In the paper, the authors propose a calculation method using batch normalization layer to find typical
features. However, we utilize the proposed calculation method without using batch normalization layer to
find typical feature(i.e., Typical Feature Estimated Method (TFEM)), which calculates typical feature by
training images. ViM(Wang, Li, Feng, & Zhang, 2022) is Virtual-logit Matching (ViM), which combines
the class-agnostic score from feature space and the ID class-dependent logits for OOD detection. ViM
generates an additional logit representing the virtual OOD class from the residual of the feature against
the principal space and matches it with the original logits by a constant scaling. The probability of this
virtual logit after softmax is the indicator of OOD-ness. GradNorm(Huang, Geng, & Li, 2021) is an
OOD detection method that uses information extracted from the gradient space of networks. GradNorm
directly employs the vector norm of gradients, backpropagated from the KL divergence between the
softmax output and a uniform probability distribution. Comparison with above methods are tabulated
in Table 10.

References

Chen, J., Li, Y., Wu, X., Liang, Y., & Jha, S. (2021). Atom: Robustifying out-of-distribution detection
using outlier mining. In Machine learning and knowledge discovery in databases. research track:
European conference, ecml pkdd 2021, bilbao, spain, september 13–17, 2021, proceedings, part iii 21
(pp. 430–445).

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings
of the ieee conference on computer vision and pattern recognition (pp. 770–778).

Hebbalaguppe, R. S., Goshal, S. S., Prakash, J., Khadilkar, H., & Arora, C. (2022). A novel data
augmentation technique for out-of-distribution sample detection using compounded corruptions.
arXiv preprint arXiv:2207.13916 .

Hendrycks, D., & Gimpel, K. (2017). A baseline for detecting misclassified and out-of-distribution
examples in neural networks. In Proceedings of international conference on learning representations.

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., . . . others (2019). Searching
for mobilenetv3. In Proceedings of the ieee/cvf international conference on computer vision (pp.
1314–1324).

6



Hsu, Y.-C., Shen, Y., Jin, H., & Kira, Z. (2020). Generalized odin: Detecting out-of-distribution
image without learning from out-of-distribution data. In Proceedings of the ieee/cvf conference on
computer vision and pattern recognition (pp. 10951–10960).

Huang, R., Geng, A., & Li, Y. (2021). On the importance of gradients for detecting distributional shifts
in the wild. In Advances in neural information processing systems.

Krizhevsky, A., Hinton, G., et al. (2009). Learning multiple layers of features from tiny images.
Liang, S., Li, Y., & Srikant, R. (2018). Enhancing the reliability of out-of-distribution image detection

in neural networks. In 6th international conference on learning representations, iclr 2018.
Liu, W., Wang, X., Owens, J., & Li, Y. (2020). Energy-based out-of-distribution detection. Advances in

Neural Information Processing Systems.
Macêdo, D., Ren, T. I., Zanchettin, C., Oliveira, A. L. I., & Ludermir, T. (2021). Entropic out-of-

distribution detection: Seamless detection of unknown examples. IEEE Transactions on Neural
Networks and Learning Systems, 1-15. DOI: 10.1109/TNNLS.2021.3112897

Simonyan, K., & Zisserman, A. (2014). Very deep convolutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556 .

Song, Y., Sebe, N., & Wang, W. (2022). Rankfeat: Rank-1 feature removal for out-of-distribution
detection. In Neurips.

Sun, Y., Guo, C., & Li, Y. (2021). React: Out-of-distribution detection with rectified activations. In
Advances in neural information processing systems.

Sun, Y., & Li, Y. (2022). Dice: Leveraging sparsification for out-of-distribution detection. In European
conference on computer vision.

Wang, H., Li, Z., Feng, L., & Zhang, W. (2022). Vim: Out-of-distribution with virtual-logit matching.
In Proceedings of the ieee/cvf conference on computer vision and pattern recognition.

Zagoruyko, S., & Komodakis, N. (2016, September). Wide residual networks. In E. R. H. Richard
C. Wilson & W. A. P. Smith (Eds.), Proceedings of the british machine vision conference
(bmvc) (p. 87.1-87.12). BMVA Press. Retrieved from https://dx.doi.org/10.5244/C.30.87

DOI: 10.5244/C.30.87
Zhu, Y., Chen, Y., Xie, C., Li, X., Zhang, R., Xue’, H., . . . Chen, Y. (2022). Boosting out-of-distribution

detection with typical features. In A. H. Oh, A. Agarwal, D. Belgrave, & K. Cho (Eds.), Advances
in neural information processing systems. Retrieved from https://openreview.net/forum?id=

4maAiUt0A4

7

https://dx.doi.org/10.5244/C.30.87
https://openreview.net/forum?id=4maAiUt0A4
https://openreview.net/forum?id=4maAiUt0A4

