Boost Vision Transformer with GPU-Friendly Sparsity and Quantization
Appendix

Chong Yu'? Tao Chen®*

Zhongxue Gan'*
' Academy for Engineering and Technology, Fudan University

Jiayuan Fan!
2NVIDIA Corporation

3School for Information Science and Technology, Fudan University

1. Outline

In this Appendix, we will provide some supplementary
materials and more experimental results for the proposed
GPUSQ-ViT compression scheme beyond the tight page
limitation in manuscript. The detailed outline is as follows.

Section 2 aims to further support the contents in Section
3 of the manuscript.

* Sub section 2.1 derives the storage saving of 2:4 struc-

tured sparsity for FP16, INTS, and INT4 data types.

* Sub section 2.2 provides the details and whole work-

flow of the GPUSQ-VIiT algorithm.

Section 3 aims to further support the contents in Section
4 of the manuscript.

 Table 1 provides the hyper-parameters settings of each

experiment for easy reproduction.

¢ Sub section 3.1 provides GPUSQ-ViT compression

results on other classification models, and proves it is
orthogonal to token reduction compression method.

* Sub section 3.2 provides visualization results of criti-

cal feature maps from vision transformer models.

* Sub section 3.3 further explains the influence of ad-

justment factors with the ablation study, and analyzes
why GPUSQ-ViT has such a good compression effect.

2. Boost vision transformer on GPU

GPUSQ-ViT mainly contains 2:4 structured sparse
pruning and sparse-distillation-aware QAT workflows.
We further explain the 2:4 sparse pattern for storage saving
in section 2.1, and provide the detailed steps of GPUSQ-
VIiT algorithm in section 2.2.

2.1. Fine-grained structured sparsity on GPU

The 2:4 sparsity uses 2-bit metadata per non-zero ele-
ment to indicate the position of two non-zero elements in
every four adjacent elements in a row of matrix A. For ma-
trix A with FP16 data format, storing four adjacent elements
as a dense pattern requires 4 x 16bits = 64bits, while stor-
ing as a 2:4 sparse pattern requires 2 X 16bits + 2 x 2bits =

Four-wide chunk from a row in Matrix A Compressed format of Matrix A Metadata

11 10 01 00

Indices of elements within the four-wide chunk

(a) Sparse FP16 data format

Four-wide chunk from a row in Matrix A Compressed format of Matrix A Metadata
8:bit 8:bit 2-bit
[y lofofx| v [x] [n]o]

11 10 01 00

Indices of elements within the four-wide chunk

(b) Sparse INTS data format

Eight-wide chunk from a row in Matrix A Compressed format of Matrix A Metadata

z’y70’07‘70\07LX‘WJ 2y [x]w] [11]o0]

11 10 01 00

Indices of two-wide sub-chunks within the eight-wide chunk

(¢) Sparse INT4 data format

Figure 1. Storage formats for 2:4 fine-grained structured sparse
pattern and metadata with FP16, INT8 and INT4 operators.
(W,X,y,z denote the non-zero elements.)

36bits. For matrix A with INT8 data format, storing as
dense and 2:4 sparse pattern requires 4 x 8bits = 32bits
and 2 x 8bits + 2 x 2bits = 20bits, respectively. The 2:4
sparsity instruction for the INT4 data format differs from
FP16 and INT8. Matrix A is defined as a pair-wise struc-
tured sparse at a granularity of 4:8. In other words, each
chunk of eight adjacent elements in a row of matrix A has
four zero and four non-zero values. Further, the zero and
non-zero values are clustered in sub-chunks of two elements
each within the eight-wide chunk, i.e., each two-wide sub-
chunk within the eight-wide chunk must be all zeroes or all
non-zeroes. Only the four non-zero values are stored in the
compressed matrix, and two 2-bit indices in the metadata
indicate the position of the two two-wide sub-chunks with
non-zero values in the eight-wide chunk of a row of matrix
A. So for matrix A with INT4 data format, storing as dense
and sparse pattern also requires 8 x 4bits = 32bits and
4 x 4bits+ 2 x 2bits = 20bits, respectively. In conclusion,
the sparse format for FP16, INTS8, and INT4 lead to 43.75%,
37.5%, and 37.5% savings in storage. GPUSQ-ViT will
firstly compress the model as 2:4 FP16 sparse, then further
quantize to 2:4 INTS8 or INT4 sparse for best efficiency.

Algorithm 1: GPUSQ-ViT: vision transformers compression with 2:4 sparsity and sparse-distillation-aware QAT
Input: Dense floating-point model M pr which contains K stages of transformer blocks, Input images x
Data: Distillation temperature ¢, Loss adjustment factors for hard label, soft logits and feature: «, 3, v, Adjustment factors for
feature-based distillation of critical layers in different stages: 6;,7 = 1--- K, Overall pruning loss threshold dprune,
Overall calibration loss threshold dcatibrate
Output: Sparse quantized model M sq
1 /+x 2:4 structured sparse pruning compression workflow =/
2 Initialize sparse floating-point model M s with the weight parameters from dense floating-point model M p
3 while Overall sparse pruning loss: Lyprune is larger than threshold §pryne do

4 Get feature maps of critical layers from M pr and MsF, e.g., patch embedding: Fzﬁ’fc’; and Fgﬁf L. last layer of last
transformer block in stage 4 Ff‘;i’lfcki and Fxflfmki, and the final projection layer: Fﬁffj and F%ﬁg p

5 // Calculate feature-based distillation loss with mean-squared-error (MSE) criterion
prune _ Mpp pMsp K) Mp F Ms p Mpr Msp

6 Lfeatu're - LA/ISE (Fpatch7 Fpatch) + Zi:l |:9l ' LJWSE (thblocki ’ thblocki):| + LMSE (Ffproj7 Ffproj)

7 // Calculate hard label distillation loss with cross entropy (CSE) criterion

s if Ground truth labels: labelGround of input images x exists then

9 | Ly abes = Lose (labelground, Msr (x;T = 1))

10 else

1 | Lyt = Lose Mpr (23T = 1) ,MsF (;T = 1))

12 end

13 // Calculate soft logits distillation loss with Kullback Leibler divergence (KLD) criterion

4 L ogie = Lk Mpr (7T = 1), Msr (z; T =)

. . _ prune prune prune

15 Calculate the overall sparse pruning 108s: Lyrune = a* Ly "0 o + B * Liotitogits 7 * Lieqrure

16 Minimize the overall sparse pruning loss w.r.t weight parameters of sparse floating-point model M s

17 end

18 /+ sparse-distillation—-aware QAT compression workflow =/
19 Initialize sparse quantized model M sg by PTQ the weight parameters from trained sparse floating-point model M sr
20 while Overall quantization calibration loss: Lcaiivrate is larger than threshold Scqlibrate Ao

.. . M
21 Get feature maps of critical layers from M sr and M s, e.g., patch embedding: ng - and Fpaffh, last layer of last
. . M L M
transformer block in stage i: Fxfl‘zcki and F, fffgcki, and the final projection layer: F}WPST’; ; and Ffpifj
22 Calculated the sparse-distillation-aware weight factor:
M M g prune .
LMSE (Fpa?th’ Fpatfh) /Lfeatu're7 J= 0
— . M M prune .
Wj - gl ‘Lyse (thbDlgckj’thglI;ckj) /Lfeatu're7 J= 17 7K
M M prune .
LIV[SE (Ffp€5j7Ffpi§j) /Lfeature7 J _K+1
23 // Calculate feature-based calibration loss with mean-squared-error (MSE) criterion
calibrate __ M s 5Q K ; M s g Msq Ms p s5Q
24 Lfeature =Wo-Lusk (Fpatch7 Fﬁfl.teh) +Zi:1 |:WZ ‘Luse (thblocki ’ thblock:,i)] + WK+1 ‘Lyuse (FfIJTOJ" FZWOJ')
25 // Calculate hard label calibration loss with cross entropy (CSE) criterion
26 if Ground truth labels: labelGrouna Of input images x exists then
27 | Liiete, = Lose (labelground, Msq (x;T = 1))
28 else
librate
29 | Lyt = Lose (Msp (23T = 1) ,Msq (z;T = 1))
30 end
31 // Calculate soft logits calibration loss with Kullback Leibler divergence (KLD) criterion
32 e s =LkLp (Msr (3T =1t) ,Msq (x;T = t)) ‘ _ _
3 Calculate the overall quantization calibration loss: Leatibrate = o * LE%in4e + B+ LESEDTate, 4 oy x L2librate
34 Minimize the overall quantization calibration loss w.r.t weight and scale factor parameters of sparse quantized model M s¢q
35 end
2.2. Overall GPUSQ-ViT compression method floating-point M s . Sparse-distillation-aware QAT aims

to further compress the sparse floating-point model M gsr
as the sparse quantized model Msq on data format. The

In GP -ViT, 2:4 structured i i . . A .
n GPUSQ-Vi structured sparse pruning aims details about GPUSQ-VIiT are provided in Algorithm 1.

to compress the dense floating-point model M pr as sparse

Network Optimizer Initial LR LR schedule Momentum Weight Decay Epochs Batch Size GPU Num
DeiT-Tiny' AdamW 0.0005 Cosine Annealing 0.9 0.05 300 256 8
DeiT-Small’ AdamW 0.0005 Cosine Annealing 0.9 0.05 300 256 8
DeiT-Base' AdamW 0.0005 Cosine Annealing 0.9 0.05 300 64 16
Swin-Tiny (2242)* AdamW 0.001 Cosine Annealing 0.9 0.05 300 128 8
Swin-Small (2242)° AdamW 0.001 Cosine Annealing 0.9 0.05 300 128 8
Swin-Base (2242)? AdamW 0.001 Cosine Annealing 0.9 0.05 300 128 8
Swin-Base (3842)? AdamW 0.00002 Cosine Annealing 0.9 1.0e-08 30 64 8
Swin-V2-Tiny (256%)” AdamW 0.001 Cosine Annealing 0.9 0.05 300 128 8
Swin-V2-Small (2562)° AdamW 0.001 Cosine Annealing 0.9 0.05 300 64 8
Swin-V2-Base (2562)” AdamW 0.001 Cosine Annealing 0.9 0.05 300 64 8
A-ViT-Tiny (224%)’ AdamW 0.0005 Cosine Annealing 0.9 0.05 100 128 4
A-ViT-Small (224%)° AdamW 0.0003 Cosine Annealing 0.9 0.05 100 96 4
Mask R-CNN (Swin—Tinyﬁ AdamW 0.0001 Multi-Step (milestone: 27,33) 0.9 0.05 36 2 8
Mask R-CNN (Swin-Small)* AdamW 0.0001 Multi-Step (milestone: 27,33) 0.9 0.05 36 2 8
Cascade Mask R-CNN (Swin»Tiny)4 AdamW 0.0001 Multi-Step (milestone: 27,33) 0.9 0.05 36 2 8
Cascade Mask R-CNN (Swin-Small)* ~ AdamW 0.0001 Multi-Step (milestone: 27,33) 0.9 0.05 36 2 8
Cascade Mask R-CNN (Swin-Base)” AdamW 0.0001 Multi-Step (milestone: 27,33) 0.9 0.05 36 2 8
DETR (ResNet50)° AdamW 0.0001 Step (every 200 steps) 0.9 0.0001 500 2 8
Deformable DETR (ResNet50)° AdamW 0.0002 Step (every 40 steps) 0.9 0.0001 50 2 8
UperNet (Swin-Tiny) AdamW 0.00006 Polynomial 0.9 0.01 127 2 8
UperNet (Swin-Small)’ AdamW 0.00006 Polynomial 0.9 0.01 127 2 8
UperNet (Swin-Base)’ AdamW 0.00006 Polynomial 0.9 0.01 127 2 8

Table 1. Experiments hyper-parameters for the classification, object detection and segmentation models tested in this paper.

3. Experiments

For the experiments in this paper, we choose PyTorch
with version 1.12.0 as the framework to implement all al-
gorithms. The results of the dense model training, sparse
compression, and QAT experiments are obtained with A100
GPU clusters. All the reference algorithms use the default
data type provided in public repositories.

For classification (DeiT', Swin V1 and V2%, A-ViT?),
object detection (Mask R-CNN*, DETR’, Deformable-
DETR®) and segmentation (UperNet’) networks, we follow
the hyper-parameters settings in public repositories marked
by the footnotes and detailed list in Table 1. Multiple A100
GPUs are used for data-parallel training in each training or
fine-tuning experiment.

3.1. Compression efficacy for classification task

To evaluate the compression efficacy of GPUSQ-ViT
and make the comparison with prior arts on the image
classification task, DeiT [2]', Swin Transformer V1 and
V2 [171%, A-ViT [3]® are chosen as the experiment target
models. The results of DeiT and Swin Transformer V1 are
already shown in the manuscript. In Appendix, we com-
press the Swin Transformer V2 and A-ViT models with
GPUSQ-ViT. We do not have full comparison results with
the state-of-the-art vision transformer compression meth-
ods, because the prior methods do not try to compress these
models. For GPUSQ-VIT, the loss adjustment factors for
hard label, soft logits and feature-based losses apply o« = 1,
B = 10, and v = 5), respectively. The model size and

FLOPs comparison results are shown in Table 2.

Model | Method | Input Format | Params (M) FLOPs (G) | Top-1Acc(%) Top-5 Ace(%)

Baseline FP32 5 0.8 71.4 90.4
A-ViT-Tiny GPUSQ-ViT | 224° INTS 0.78(6.4x) 0.03(31x) | 71.4 90.5
GPUSQ-ViT INT4 0.39(12.7x) 0.01 (62x) | 70.9 (-0.5) 89.9 (-0.5)
Baseline FP32 22 3.6 78.8 93.9
A-ViT-Tiny GPUSQ-ViT | 224* INT8 3.44 (6.4x) 0.12(31x) | 78.9 94.1
GPUSQ-ViT INT4 1.72 (12.7x) 0.06 (62x) | 78.5 (-0.3) 93.6 (-0.3)
Baseline FP32 28 6.6 82.8 96.2
Swin-V2-Tiny | GPUSQ-ViT | 256> INT8 438(64x) 021 (31x) | 829 96.2
GPUSQ-ViT INT4 2.19(12.7x) 0.11(62x) | 82.4 (-0.4) 96.0 (-0.2)
Baseline FP32 50 12.6 84.1 96.8
Swin-V2-Small | GPUSQ-ViT | 256 INT8 7.81 (6.4x) 0.41 (31x) | 84.1 96.7 (-0.1)
GPUSQ-ViT INT4 3.91(12.7x) 0.20(62x) | 84.0(-0.1) 96.6 (-0.2)
Baseline FP32 88 21.8 84.6 97.0
Swin-V2-Base | GPUSQ-ViT | 256> INT8 13.75(6.4x) 070 (31x) | 84.6 97.0
GPUSQ-ViT INT4 6.88 (12.7x) 0.35(62x) | 84.4(-0.2) 96.9 (-0.1)

Table 2. Effectiveness of GPUSQ-VIT on classification task.

We can apply GPUSQ-ViT to compress each vision
transformer model as INT8 and INT4 versions. For INT8
compressed models, GPUSQ-VIT can bring 6.4x reduc-
tion for model size and 31x reduction for FLOPs with
negligible accuracy drop. For INT4 compressed models,
GPUSQ-ViT can get 12.7x and 62x reduction for model
size and FLOPs with a small accuracy drop.

Moreover, A-ViT method already compress the vision
transformer models by automatically reducing the number
of tokens that are processed in the model inference process.
We can find the GPUSQ-ViT compression is orthogonal
to such token reduction compression method, i.e., GPUSQ-
ViT can further compress the A-ViT models to a more effi-
cient version with negligible accuracy drop.

3.2. Visualization results

To compare between dense and GPUSQ-ViT com-
pressed models in visualization, we choose the output of
layer norm after patch embedding, each patch merging layer
after the last Swin Transformer block in each stage, and the
final layer norm of the model, to generate the Class Ac-
tivation Map (CAM) results. The CAM results of Swin-
V1-Tiny, Swin-V1-Base, Swin-V2-Tiny, Swin-V2-Base are
shown in Figure 2, 3, 4, and 5, respectively.

https://github.com/facebookresearch/deit
https://github.com/microsoft/Swin-Transformer
https://github.com/NVlabs/A-ViT
https://github.com/SwinTransformer/Swin-Transformer-Object-Detection
https://github.com/facebookresearch/detr
https://github.com/fundamentalvision/Deformable-DETR
https://github.com/SwinTransformer/Swin-Transformer-Semantic-Segmentation

No. Input Image Patch Embed Stage 1 Final Norm

(a-0)

(a-1)

(a-2)

(b-0)

(b-1)

(b-2)

(c-0)

(c-1)

(c-2)

(d-0)

(d-1)

(d-2)

Figure 2. Attention map visualization for Swin Transformer V1 Tiny. We choose the output of layer norm after patch embedding, each
patch merging layer after the last Swin Transformer block in each stage, and the final layer norm of the model, to generate the Class
Activation Map (CAM) visualization results. (a/b/c/d-0) are CAM results of dense pretrained model on ImageNet-1K dataset, (a/b/c/d-1)
are CAM results of GPUSQ-ViT compressed INT8 models. (a/b/c/d-2) are CAM results of GPUSQ-ViT compressed INT4 models.

No. Input Image Patch Embed Final Norm

(a-0)

(a-1)

(a-2)

(b-0)

(b-1)

(b-2)

(c-0)

(c-1)

(ec=2)

(d-0)

(d-1)

(d-2)

Figure 3. Attention map visualization for Swin Transformer V1 Base. We choose the output of layer norm after patch embedding, each
patch merging layer after the last Swin Transformer block in each stage, and the final layer norm of the model, to generate the Class
Activation Map (CAM) visualization results. (a/b/c/d-0) are CAM results of dense pretrained model on ImageNet-1K dataset, (a/b/c/d-1)
are CAM results of GPUSQ-ViT compressed INT8 models. (a/b/c/d-2) are CAM results of GPUSQ-ViT compressed INT4 models.

No. Input Image Patch Embed Stage 1

(a-0)

(a-1)

(a-2)

(b-0)

(b-1)

(b-2)

(c-0)

(c-1)

(c=2)

(d-0)

(d-1)

(d-2)

Figure 4. Attention map visualization for Swin Transformer V2 Tiny. We choose the output of layer norm after patch embedding, each
patch merging layer after the last Swin Transformer block in each stage, and the final layer norm of the model, to generate the Class
Activation Map (CAM) visualization results. (a/b/c/d-0) are CAM results of dense pretrained model on ImageNet-1K dataset, (a/b/c/d-1)
are CAM results of GPUSQ-ViT compressed INT8 models. (a/b/c/d-2) are CAM results of GPUSQ-ViT compressed INT4 models.

No. Input Image Patch Embed Stage 1

(a-0)

(a-1)

(a-2)

(b-0)

(b-1)

(b-2)

(c-0)

(c-1)

(ec=2)

(d-0)

(d-1)

(d-2)

Figure 5. Attention map visualization for Swin Transformer V2 Base. We choose the output of layer norm after patch embedding, each
patch merging layer after the last Swin Transformer block in each stage, and the final layer norm of the model, to generate the Class
Activation Map (CAM) visualization results. (a/b/c/d-0) are CAM results of dense pretrained model on ImageNet-1K dataset, (a/b/c/d-1)
are CAM results of GPUSQ-ViT compressed INT8 models. (a/b/c/d-2) are CAM results of GPUSQ-ViT compressed INT4 models.

GPUSQ-ViT (INTS8) GPUSQ-ViT (INT4)
Model Factor « Factor 3 Factor v 5;2?;3 (I%z?crfor Top-1 Top-5 Top-1 Top-5
Acc(%) Acc(%) Acc(%) Acc(%)
1 10 5 v 82.9 96.4 81.6 (-0.2) 95.5(-0.1)
1 10 5 X 82.4 96.1 80.1 (-1.7) 94.3(-1.3)
_ 1 0 5 v 82.7 96.2 81.3(-0.5) 95.2(-0.4)
g‘;‘ﬁ)‘**‘se 1 10 0 v 82.2 95.8 80.8 (-1.0) 94.8 (-0.8)
1 20 5 v 82.9 96.4 81.6 (-0.2) 95.6
1 30 5 v 82.9 96.5 81.6 (-0.2) 95.6
1 10 10 v 82.8 96.5 81.5(-0.3) 95.5(-0.1)
1 10 2.5 v 82.8 96.5 81.5(-0.3) 95.6
1 10 5 v 83.4(-0.1) 96.4(-0.1) | 83.2(-0.3) 96.3(-0.2)
1 10 5 X 82.9 (-0.6) 96.0 (-0.5) | 81.5(-2.0) 94.9(-1.6)
. 1 0 5 v 832(-0.3) 96.2(-0.3) | 82.9(-0.6) 96.0 (-0.5)
(SZV;“‘“Z')};ase 1 10 0 v 82.7(-0.8) 95.7(-0.8) | 824 (-1.1) 95.5(-1.0)
1 20 5 v 83.4 (-0.1) 96.4(-0.1) | 83.2(-0.3) 96.3(-0.2)
1 30 5 v 83.4 (-0.1) 96.4(-0.1) | 83.2(-0.3) 96.4 (-0.1)
1 10 10 v 833(-0.2) 96.4(-0.1) | 83.1(-0.4) 96.3(-0.2)
1 10 2.5 v 833(-0.2) 96.4(-0.1) | 83.1(-0.4) 96.4(-0.1)

Table 3. Ablation study of the loss adjustment factors and sparse-distillation-aware weight factors of GPUSQ-ViT method.

From the CAM visualization results, we can find that the
GPUSQ-VIiT compressed models try to mimic the feature
maps of the dense pretrained models in most cases. But
the mimicking still fails for some layers of the GPUSQ-
ViT compressed models. That’s the reason why we can
see a small accuracy drop between dense pretrained and
GPUSQ-ViT compressed models, especially for GPUSQ-
ViT compressed INT4 models.

3.3. Ablation study of GPUSQ-ViT

The ablation study to measure the influence of the dif-
ferent adjustment factors for the hard label, soft logits,
and feature-based losses («, 3, y) and enabling sparse-
distillation-aware weight factor on GPUSQ-ViT com-
pressed model accuracy is shown in Table 3.

By comparing the ablation results of row 1 and row 2
for each model, we can find enabling sparse-distillation-
aware weight factor has an apparent boost for the com-
pressed models’ accuracy. Such a boost effect is more in-
fluential on INT4 than INT8 model, because disabling this
weight factor will see a more significant drop in INT4 com-
pressed model. The potential reason is sparse-distillation-
aware weight factor indicates how much influence the quan-
tization error from each critical layer has on the final accu-
racy. So the distillation process can focus on mimicking the
layers with more accuracy influence, which is more effec-
tive for limited quantized bits.

Then, by comparing the ablation results of row 3 and
row 4 for each model, we can find disabling the feature-
based distillation will lead to a more severe influence than

disabling the soft logits distillation. It indicates that mim-
icking feature maps is very helpful for accuracy compensa-
tion in GPUSQ-ViT compression.

Finally, by comparing the ablation results of row 1, row
5 and row 6 for each model we can find GPUSQ-VIT is
relatively robust to the soft logits loss adjustment factor. By
comparing the ablation results of row 1, row 7 and row 8 for
each model we can find GPUSQ-VIiT is also robust to the
feature-based loss adjustment factor, i.e., within the close
range of 5 = 10 and v = 5 the accuracy of compressed
models are stable.

References

[1] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer: Hi-
erarchical vision transformer using shifted windows. In Pro-
ceedings of the IEEE/CVF International Conference on Com-
puter Vision, pages 10012-10022, 2021. 3

[2] Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco
Massa, Alexandre Sablayrolles, and Hervé Jégou. Training
data-efficient image transformers & distillation through atten-
tion. In International Conference on Machine Learning, pages
10347-10357. PMLR, 2021. 3

[3] Hongxu Yin, Arash Vahdat, Jose M Alvarez, Arun Mallya, Jan
Kautz, and Pavlo Molchanov. A-vit: Adaptive tokens for ef-
ficient vision transformer. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
pages 10809-10818, 2022. 3

	. Outline
	. Boost vision transformer on GPU
	. Fine-grained structured sparsity on GPU
	. Overall GPUSQ-ViT compression method

	. Experiments
	. Compression efficacy for classification task
	. Visualization results
	. Ablation study of GPUSQ-ViT

