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– Supplementary Material –

In the supplementary material, we provide additional details of our methods and additional analysis of the experimental
results. We also discuss the limitations of our method and the potential negative societal impact.

A. Additional Method Details
A.1. Computation of Multi-scale Spatial Activation Region Consistency Constraint

Index ResNet Wide ResNet

L0 Conv. + BatchNorm + ReLU ( + Max pool) Conv.
L1 Stage 1 Stage 1
L2 Stage 2 Stage 2
L3 Stage 3 Stage 3
L4 Stage 4
L5 BatchNorm + ReLU
L6 Average pool Average pool
L7 Fully-connected layer Fully-connected layer

Table A. Simplified representation of the ResNet and Wide ResNet architectures.

Multi-scale spatial activation region consistency (mSARC) constraint is used for knowledge distillation between the student
(S) and teacher (T ) network in our method:

LmSARC = Ex̂∼p(x̂)

t∑
k=1

||CAMik(S, x̂)− CAMjk(T, x̂)||22, (A1)

where k = 1, 2, ..., t, ik and jk denote the layer index, CAMik(S, x̂) denotes the class activation maps (CAMs) [8] of S at
layer ik for x̂, and CAMjk(T, x̂) denotes the CAMs of T at layer jk for x̂. So we need to compute the CAMs for both teacher
and student networks.

We use two different calculation methods to calculate CAMs of two networks for features from the last layer before the
average pooling layer and from shallower layers, respectively. Details of these methods are provided as follows:

(i) For features from the last layer before the average pooling layer (L4 of ResNet and L5 of Wide ResNet in Table A) in S
or T with the size of (nc, h, w) (nc is the number of its channel, h × w is the size of its feature map), we can compute its
CAM for class c following [8]:

CAMc =
∑
p

wc
p × fp, (A2)

where fp denotes the feature map of channel p, and wc
p denotes the weight corresponding to class c for unit p (i.e., the p-th

channel of the result of the global average pooling 1
Z

∑
x,y fp(x, y) ) of the last fully-connected layer, which indicates the

importance of fp for class c.
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In our implementation, we copy the weights of the last fully-connected layer to a convolutional layer which contains K
convolutional kernels of size 1× 1× nc. In which, K equals to the number of classes in the dataset, and nc is the number of
channels of features before the last pooling layer. A feature of shape (K,h,w) can be obtained after feeding the feature to
such a convolutional layer, where the i-th channel of the obtained feature is the CAM for class i. We use the obtained features
of the student network and the teacher network to calculate the Eq. A1.

(ii) For features from shallower layers (L1, L2, and L3 in Table A) in S or T , the above method cannot be applied directly
because it is designed only for the features from that last layer before the average pooling layer. Inspired by gradient-weighted
class activation mapping (Grad-CAM) [7], we compute CAM of the shallower features for class c by

CAMc =
∑
p

αc
p × fp, (A3)

where fp denotes the feature map of channel p, and αc
p dentoes the importance weights of fp for class c. αc

p is obtained by
computing the gradient of the one-hot score for class c, yc (before the softmax), with respect to feature maps fp, i.e., ∂yc

∂fp
.

ResNet and VGG contain four convolutional stages of different feature map sizes. Wide ResNet contains three convolutional
stages of different feature map sizes. The features used for calculating the CAMs of different networks are as follows: For
ResNet and VGG architecture networks, we use the features obtained by their middle four convolutional stages (L1, L2, L3,
and L4 of ResNet in Table A). For Wide ResNet architecture networks, we use the features obtained by their middle three
convolutional stages and the last layer before the average pooling layer (L1, L2, L3, and L5 of Wide ResNet in Table A).

A.2. More Implementation Details

Teacher Network. The pre-trained teacher networks of ResNet-34, WRN-40-2, and VGG-11 used for CIFAR-10 and
CIFAR-100 [4] are from [2]. The pre-trained teacher networks of ResNet-34 used for Tiny-ImageNet [5], Imagenette1 and
ImageNet1002 are trained by ourselves using image-label pairs in its training set.

Channel-wise Feature Exchange. The detailed architecture of our generative network G is given in Table B. We save
the features before the first two upsampling layers and the last convolution layer (marked with *) into the feature pool when
optimizing the generative network G, and use these saved features to perform channel-wise feature exchange (CFE). We
perform CFE on the sampled features F 1

i , F
2
i , ..., F

n
i and then feed the channel-wise feature exchanged features to layers of G

ranging from i+ 1 to m, i.e., Gi+1,...,m with a probability p = 0.7, where i is the layer index. The features Fi sampled from
the feature pool are directly fed to Gi+1,...,m with probability (1− p).

Structure Intput size Output size

Linear (256) (8HW )

Reshape (8HW ) (128, H
4 ,

W
4 )

BatchNorm* (128, H
4 ,

W
4 ) (128, H

4 ,
W
4 )

Upsampling (2) (128, H
4 ,

W
4 ) (128, H

2 ,
W
2 )

Conv. (k = 3, s = 1, p = 1) + BatchNorm + LeakyReLU* (0.2) (128, H
2 ,

W
2 ) (128, H

2 ,
W
2 )

Upsampling (128, H
2 ,

W
2 ) (128, H,W )

Conv. (k = 3, s = 1, p = 1) + BatchNorm + LeakyReLU* (0.2) (128, H,W ) (64, H,W )

Conv. (k = 3, s = 1, p = 1) + Sigmoid (64, H,W ) (3, H,W )

Table B. The detailed architecture of the generative network G in our proposed method. H and W are the height and width of synthetic
images.

1https://github.com/fastai/imagenette
2https://www.kaggle.com/datasets/ambityga/imagenet100



Training Details. The following are the training details of our method by default. We train our networks for max_epoch
epochs in total. In each epoch, we first train the generative network and then train the student network. In detail, we first sample
a mini-batch of noises and then optimize the generative network for max_g_iterations iterations. After that, we store the
features corresponding to these noises in a feature pool. Then we randomly sample features from the feature pool to generate
synthetic training images to train the student network for max_kd_iterations iterations. We set max_g_iterations = 200,
max_kd_iterations = 2000, and max_epoch = 200.

The generative network is trained by an Adam optimizer [3] with {β1 = 0.5, β2 = 0.999} and with a learning rate starting
from 0.1 and then gradually decreasing to 0 by cosine annealing scheduler [6]. The student network is trained by a SGD
optimizer with {lr = 0.1, weight_decay = 1e− 4,momentum = 0.9}. The mini-batch size for optimizing the generative
network and the student network is 256.

We set λcls = 0.5 and λBN = 1 in Eq. 2, λKL = 900 and λmSARC = 1 in Eq. 3, and τ = 30 when computing LKL:

LKL = Ex,y∼p(x,y)KL(S(x; θS)/τ ||T (x; θT )/τ) (A4)

B. Further Experimental Analysis
B.1. Impact of mSARC on CAMs

Method (a) (b)
MAE MSE MAE MSE

SpaceshipNet 11.58 696.59 10.78 576.87
SpaceshipNet w/o LmSARC 72.53 12778.76 73.02 12893.86

Table C. Difference of CAMs between the teacher network T and the student networks S trained by our method with and without using
LmSARC for (a) the complete 10,000 images in the CIFAR-10 test set and (b) a subset of 9,474 images in the CIFAR-10 test set that can be
correctly classified into their ground-truth category by both student networks trained by our method with and without using LmSARC .

In our main manuscript, we report the impact of multi-scale spatial activation region consistency (mSARC) constraint on
CAM on CIFAR-100. Here we report the results on CIFAR-10. We compute the CAM difference between the teacher and
student network trained with and without LmSARC for the 10,000 images in the CIFAR-10 test set. The results are shown
in Table C (a). As can be observed, the CAM difference between the teacher network and the student network drastically
declines after using LmSARC . We also compute the CAM differences for the 9,474 images in the CIFAR-10 test set that can be
correctly classified to their ground-truth category by both the student networks trained by our method and our method without
using LmSARC . The result are shown in Table C (b). The CAM difference still drastically declines after using LmSARC .
These results positively indicate that mSARC can effectively reduce the CAM difference between the student and teacher
network. In other words, it promotes the student network to learn discriminative cues from the same spatial region with the
teacher network.

The differences of CAMs are computed as follows: We first calculate the CAMs of both the teacher and student networks
using [8]. Next, we resize the obtained CAM tensors to the size of the input image and rescale their values to the range of
[0,255]. Finally, we calculate the mean absolute error (MAE) and mean sqaure error (MSE) between the resized and rescaled
CAMs of the teacher and student networks.

B.2. Impact of Positions of the Swapped Channels

In this section, we examine the impact of the positions of the swapped channels on the performance of our method. In
previous experiments, we randomly swapping 50% channels from F a

i when using channel-wise feature exchange (CFE) for
features F a

i and features F b
i . Here, we evaluate the performance of swapping channels of different positions. Specifically,

we equally divide the channels of feature into four groups (group 0, group 1, group 2, and group 3), group i contains the
channels from positions ranging from (i− 1)× nc

4 to (i× nc
4 − 1). We swap different channel groups in feature F a

i for CFE.
The results are shown in Table D. The results show that there is no significant difference in the impact of swapping different
channel groups when performing CFE on the test accuracy. Comparing these results with ours by randomly swapping 50%
of channels demonstrates that it is required to swap channels of random positions when performing CFE to obtain synthetic
training images with better diversity.



Channels from F a
i Channels from F b

i Test accuracygroup 0
(0-25%)

group 1
(25-50%)

group 2
(50-75%)

group 3
(75-100%)

group 0
(0-25%)

group 1
(25-50%)

group 2
(50-75%)

group 3
(75-100%)

✓ ✓ ✓ ✓ 77.25%
✓ ✓ ✓ ✓ 77.14%

✓ ✓ ✓ ✓ 77.17%
✓ ✓ ✓ ✓ 76.85%

✓ ✓ ✓ ✓ 77.17%
✓ ✓ ✓ ✓ 77.15%

✓ ✓ ✓ ✓ 77.16%
✓ ✓ ✓ ✓ 77.12%

Randomly swap 50% of channels 77.41%

Table D. The influence of swapping different positions of channels when performing CFE.

B.3. Impact of Number of Optimized Images when Optimizing the Generative Network

Our method optimizes G using a mini-batch of noises z for each epoch. After optimizing G using LG, G can synthesize a
mini-batch of images x̂ = G(z) that can be classified to a category by the teacher network T and satisfied the BN constraint of
LBN , we term these images as optimized images. The features of optimized images of each epoch are stored for distillation.
In this section, we examine the impact of the total number of optimized images when optimizing the generative network G in
the training process. We conduct experiments on CIFAR-10, and the results are shown in Table E. To better compare, we also
report the results of using the same number of real images from the CIFAR-10 training set instead of synthetic images for
distillation. We can see that the test accuracies gradually increase when we use more optimized images for distillation. When
we use features of only 50 images, the test accuracy achieves 91.23%, surpassing the result of using 50 real images (24.27%)
by a large margin. This suggests that our method can improve the diversity of the synthetic images for training the student
network.

Methods Test accuracy (%)
Teacher 50 (0.1%) 250 (0.5%) 500 (1%) 1000 (2%) 2500 (5%) 51200 (102.4%)

SpaceshipNet 95.70 91.23 93.84 94.50 94.92 95.21 95.39
Distillation using real images 95.70 24.27 36.48 42.80 61.78 80.73

Table E. The influence of number of optimized images when optimizing the generative network G on CIFAR-10. The percentages in
parentheses denote the ratio of the number of optimized images to the number of images in the CIFAR-10 training set.

C. Limitations and Potential Negative Societal Impact
In this paper, we do not directly evaluate our method on a dataset of the size of ImageNet [1] due to the limitation of

computational resources. Instead, we evaluate our method on the image resolution of ImageNet by conducting experiments on
Imagenette and ImageNet100.

The datasets we use are all public datasets and contain no people, so it is unlikely to raise IRB or copyright issues.
This paper may involve some negative social implications. For example, the techniques in this paper may be applied to

migrate knowledge from unlicensed models, thereby threatening the copyright of model owners without access to the original
data. This approach makes it difficult for model owners to protect the parameters of their models deployed at terminal devices
and trace the misappropriation. However, this work suggests that models may be at risk of being misappropriated, thus
promoting research on model copyright protection. We believe that the positive impact of this work outweighs its negative
impact.
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