
Distribution Shift Inversion for Out-of-Distribution Prediction
-Supplementary Material-

In this document, we provide additional materials that cannot fit into the main manuscript due to the page limit. First, we
show experimental results on three more datasets. Extra transferred images are also presented. Next, we provide proof of the
Theorem in the main text.

1. More Experimental Results and Implementation Details
1.1. Performance on ImageNet-R, ImageNet Sketch and CdSprites-5

The results on ImageNet-R [8], ImageNet Sketch [25] and CdSprites-5 [23] are provided in this section. We use
[algorithm]* to indicate the use of DSI, the green cells to indicate our method improves the base method, and the
green cells with text in bold to indicate our method improves the base method with non-overlapped confidence interval.

ImageNet-R is a variant of ImageNet [4] and contains 30,000 images from 200 classes with different styles. In OoD
prediction, combined with a subset of the ImageNet, it is used as a single-training domain classification benchmark. In our

Dataset CdSprites

ERM 47.46˘0.16
ERM* 89.39˘0.52
ANDMask [17] 47.56˘0.16
ANDMask* 89.88˘0.18
CAD [20] 47.62˘0.32
CAD* 48.21˘0.32
CondCAD [20] 47.53˘1.40
CondCAD* 49.32˘1.46
GroupDRO [21] 47.27˘0.00
GroupDRO* 89.91˘0.05
IB ERM [1] 47.46˘0.16
IB ERM* 89.39˘0.52
IB IRM [1] 47.36˘0.08
IB IRM* 89.55˘0.52
Mixup [26] 47.69˘0.33
Mixup* 89.78˘0.30
SANDMask [22] 47.72˘0.28
SANDMask* 89.55˘0.44
SelfReg [11] 47.36˘0.08
SelfReg* 89.52˘0.52

Average Gain 33.95˘16.38

Table 1. The average accuracy ˘ the standard deviation of base algo-
rithms w/o our method on CdSprites. The performance is generally
boosted when our method is plugged in, whichever base algorithm
used.

Dataset ImageNet-R ImageNet Sketch

ERM 36.19˘1.66 20.14˘1.20
ERM* 37.28˘0.14 21.08˘0.15
CORAL 36.86˘1.65 18.11˘1.09
CORAL* 38.02˘0.06 19.86˘0.18
RSC 35.58˘1.53 18.44˘0.96
RSC* 37.80˘0.12 20.36˘0.44
SagNet 35.26˘0.95 19.50˘1.15
SagNet* 37.49˘0.67 20.41˘0.16

Average Gain 1.68˘0.55 1.38˘0.46

Table 2. The average accuracy ˘ the standard deviation of base
algorithms w/o our method on ImageNet-R and ImageNet Sketch
datasets with single training domain setting. The performance is
generally boosted when our method is plugged in, whichever base
algorithm used.

Condition Parameter Value

DDPM
learning rate 1e´4
batch size 32
diffusion step 4, 000

Stable Diffusion
learning rate 1e´4
batch size 32
diffusion step 1, 000

Table 3. Diffusion Model Hyperparameters.
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(a) Training Samples (b) Testing Samples (c) Transformed Samples

Figure 1. Samples from CdSprites-5 dataset. Testing and transformed samples are in one-to-one correspondence.

Figure 2. Transformed OoD samples. Odd rows show the original OoD images, and even rows show their transformation results to the
source distribution. Samples in the same box are form the same source-target pair.

experiment, we select the images, whose labels appear in the ImageNet-R, from the training set of ImageNet as the training set
and use ImageNet-R as the testing set. The results is shown in Tab. 2. Our method improves the base method by 1.68% on
average.

ImageNet Sketch is another variant of ImageNet and contains 50,000 sketch images collected by Google search engine,
which leads to 50 sketch images for each of the ImageNet classes. In the experiments, the original training set of ImageNet is
used as the training domain, and ImageNet Sketch is used as the testing domain. The results is shown in Tab. 2. Our method
improves the base method by 1.38% on average. This shows that our method is effective for dataset with large number of
classes.

CdSprites-5 is a variant of DSprites [15]. The original DSprites contains white shapes with different scales, rotations, and
positions. CdSprites-5 construct a binary classification problem by selecting 2 shapes from DSprites. There are 5 training
domains, 1 validation domain and 1 testing domain in CdSprites-5. Instead of using the white shapes, the author color the
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(b) No Alignment, s “ 370

Figure 3. With or without noise space alignment in the 1-D distribution transformation example.

shape. For different training domain, different color pairs are used. In the validation and testing domain, all colors appear in
the training domains are used. Furthermore, spurious correlation is injected to the training set by makes the colors strongly
correlated to the shapes. While in the validation and testing set, the colors and the shapes are uncorrelated. The results is
shown in Tab. 1. Our method achieves significant improvement when combined with base methods. This shows that our
method is also able to address the distribution shift induced by covariate shift and spurious correlation.

1.2. Transformed Samples

Fig. 1 shows the training, testing and the transformed samples on the CdSprites dataset. Each testing sample and each
transformed sample are corresponded. As shown, in the figure, for almost all sprites, the transformation does not change the
shape information, but correct the color information.

Fig. 2 also provide extra transformed sample together with the corresponding OoD samples on PACS, OfficeHome,
ImageNet-R and ImageNet Sketch.

1.3. Diffusion Model Implementation

For CDSprites-5, a DDPM model is trained from scratch with the default structure in [10]. For other datasets, we fine-tune
the U-net structure of the stable diffusion [19]1 pretrained on the laion-aesthetics v2 5+. Other important hyperparameters are
listed in Tab. 3. AdamW [14] optimizer is used for all the Diffusion Models. After training, the diffusion step is down-scaled
to 250 for both types of diffusion model by a linear schedule.

1.4. OoD Algorithms Implementation

For CDSprites, a 7-layer Convolutional Neural Network with ReLU activation, BatchNorm and residual shortcut is used.
For other datasets, EfficientNet is used. All of the algorithms are optimized by Adam [12]. To be consistent with previous
works, we reuse the hyperparameter search regions in [7] and the subsequent updates of its implementation. For completeness,
here, we also list the hyperparameter search regions in Tab. 4.

1.5. No Guidance

Though guidance is a frequently and widely used guarantee for image generation quality when implementing Diffusion
Model, such as the classifier-based [5], the CLIP-based [2, 16], the classifier-free [18], and the reference image-based [2, 3, 6]
guidance. We free DSI from using this type of technique based on the following reasons. First, in the OoD prediction task,
though can be guessed in a self-supervised learning style, no explicit prompts or labels are available before the OoD prediction
is made. This makes the first three guidance techniques inapplicable. Second, the reference image-based guidance is task-
specific and strictly preserves certain low-level components of the reference, for example, the low-frequency components [3,6]
or parts of the reference [2]. While taking the OoD sample itself as the reference image is possible, there are no low-level
components that have a guarantee on the OoD prediction and should be preserved.

1named sd-v1-4.ckpt in the official github repository.



Condition Parameter Region

Common weight decay 10Uniformṕ 6,́ 2q

generator weight decay 10Uniformṕ 6,́ 2q

EfficientNet
(1000-class ImageNet)

learning rate 10Uniformṕ 3.5,́ 2.5q

batch size 2Uniformp8.5,9.5q

generator learning rate 10Uniformṕ 5,́ 3.5q

discriminator learning rate 10Uniformṕ 5,́ 3.5q

EfficientNet
(Others)

learning rate 10Uniformṕ 5,́ 3.5q

batch size 2Uniformp3,5.5q

generator learning rate 10Uniformṕ 5,́ 3.5q

discriminator learning rate 10Uniformṕ 5,́ 3.5q

7-layer CNN

learning rate 10Uniformṕ 4.5,́ 3.5q

batch size 2Uniformp3,9q

generator learning rate 10Uniformṕ 4.5,́ 2.5q

discriminator learning rate 10Uniformṕ 4.5,́ 2.5q

ANDMask tau Uniformp0.5, 1q

CAD/ConCAD lambda Choicep1e´4, 1e´3, 1e´2, 1e´1, 1, 1e1, 1e2q

temperature Choicep0.05, 0.1q

GroupDRO eta 10Uniformṕ 1,1q

IB ERM lambda 10Uniformṕ 1,5q

penalty anneal iter intp10Uniformp0,4qq

IB IRM

lambda 10Uniformṕ 1,5q

penalty anneal iter intp10Uniformp0,4qq

irm lambda 10Uniformṕ 1,5q

irm penalty anneal iter intp10Uniformp0,4qq

Mixup alpha 10Uniformp0,4q

SANDMask tau Uniformp0.5, 1q

k 10Uniformṕ 3,5q

CORAL gamma 10Uniformṕ 1,1q

RSC rsc f drop factor Uniformp0, 0.5q

rsc b drop factor Uniformp0, 0.5q

SagNet sag w adv 10Uniformṕ 2,1q

Table 4. OoD Algorithm Hyperparameters.

1.6. Different Confidence Scores

We evaluate our method with another two confidence metrics: Maximal Likelihood [13] and KL-Divergence [9]. The
results are shown in Tab. 5. Despite the confidence score used, our method can improve the baseline method on average. The
results also indicate the importance of the choice of confidence score. With an improper confidence score, the performance of
our method degenerates.

1.7. Experiments Under Domainbed

Experimental results using Domainbed implementation are shown in Tab. 6. The main difference between the experiment
in this subsection and the experiments in the main text and above is the architecture of the predictor. Our method improves the
baseline method on average.



Confidence Score Algorithm A C P S Average

Maximal Likelihood

ERM 85.64˘1.17 80.44˘0.74 96.97˘0.49 77.73˘3.97 85.20˘1.60
ERM* 88.96˘0.98 85.06˘1.24 97.56˘0.21 85.42˘3.36 89.25˘1.44
SelfReg 84.83˘2.44 78.32˘3.27 95.48˘0.62 78.65˘4.55 84.32˘2.72
SelfReg* 87.79˘1.91 82.65˘2.49 96.13˘0.51 85.22˘2.80 87.95˘1.93

KL-Divergence

ERM 85.64˘1.17 80.44˘0.74 96.97˘0.49 77.73˘3.97 85.20˘1.60
ERM* 85.74˘0.39 81.35˘1.60 96.35˘0.53 80.60˘4.58 86.01˘1.77
SelfReg 84.83˘2.44 78.32˘3.27 95.48˘0.62 78.65˘4.55 84.32˘2.72
SelfReg* 83.79˘3.45 79.26˘2.97 94.92˘0.55 80.63˘4.07 84.65˘2.76

Table 5. The average accuracy ˘ the standard deviation of base algorithms w/o our method on PACS using different confidence scores.

Confidence Score Algorithm A C P S Average

Training-Set Validation

ERM 84.41˘3.01 80.44˘0.74 96.81˘0.53 79.82˘1.80 85.69˘1.52
ERM* 84.64˘2.42 81.38˘1.60 96.84˘0.54 82.52˘1.04 86.91˘1.40
SelfReg 84.83˘2.44 78.55˘4.80 95.61˘0.50 79.00˘1.21 84.39˘2.24
SelfReg* 84.97˘2.51 80.86˘3.69 95.61˘0.50 80.40˘0.60 85.62˘1.83

Testing-Set Validation

ERM 85.64˘1.17 80.44˘0.74 96.42˘0.90 77.73˘3.97 85.06˘1.70
ERM* 85.74˘0.39 81.38˘1.60 96.88˘0.44 80.60˘4.58 86.15˘1.75
SelfReg 84.83˘2.44 78.32˘3.27 95.64˘0.40 78.65˘4.55 84.36˘2.67
SelfReg* 84.97˘2.51 79.30˘3.01 95.67˘0.33 80.53˘4.29 85.12˘2.54

Table 6. The average accuracy ˘ the standard deviation of base algorithms w/o our method on PACS using Domainbed implementation.

1.8. Cost Analyses and Practical Suggestions

Inference. Given starting time series tslu
L
l“0 (defined in Alg. 1) and M source domains, during inference, the neural

network of the base method and each diffusion model forward at most M ˆ L ` 1 times and
řL

l“0 sl times, respectively. With
diffusion acceleration methods, our method can use smaller sl’s and L to reduce the inference cost.

Training. The training cost of our method is mainly influenced by the number of source domains and the number of
samples required. Our method uses one diffusion model per source domain and one classifier for all source domains. As the
number of source-domain grows, the network training cost increases linearly. To reduce the number of diffusion models, one
possible way is to group similar domains and train a shared diffusion model for each group. Our method uses pre-trained
diffusion models and then fine-tunes them to improve sample efficiency. In our experiments, with about 1k samples for each
source domain, the fine-tuned diffusion models can have desired performance. Few-shot fine-tuning techniques can further
reduce the training sample consumption.

2. Further Discussion on 1-D UDT
We dig deeper into our 1-D UDT example. to show that the noise space alignment is crucial. The results are plotted in

Fig. 3. When the OoD samples are entirely aligned to the noise, label information is lost completely.(Fig. 3a) Without using
noise space alignment, the OoD sample are also Out-of-Distribution with respect to the Diffusion Model. When the original
OoD samples are directly fed into the Diffusion Model, the evolution behavior is uncontrollable.(Fig. 3b)



3. Proof of Theorem 1

Theorem 1. Given a diffusion model trained on the source distribution ppxq,let pt denote the distribution at time t in the
forward transformation, let p̄pxq denote the output distribution when the input of the backward process is standard Gaussian
noise ϵ whose distribution is denoted by ρpxq, let ωpxq denote the output distribution when the input of backward process is a
convex combination X̂ “ p1 ´ αqX 1 ` αϵ, where random variable X 1 is sampled following the target distribution qpxq and
α P p0, 1q. Under some regularity conditions listed below, we have

KLpp||ωq ď JSM ` KLppT ||ρq ` Fpαq (1)

To prove Theorem 1, we make the following assumptions. Assumptions (i) to (xii) are required for implementing Theorem
1 in [24]. Specifically, assumptions (i) & (ii) require the source distribution and noise distribution to be differentiable and have
finite variance, assumptions (iii)-(iv) require f or the difference of f in Eq. (2) to be bounded corresponding to its input or the
difference of its inputs, assumption (iv) requires g in Eq. (2) to be non-zero, assumption (vi) requires pt (defined in Section 3)
and its derivative to be bounded. assumptions (vii)-(viii) require the score function of pt or the difference of it to be bounded
corresponding to its input or the difference of its inputs, assumptions (ix)-(x) require that the estimated score function or the
difference of it to be bounded corresponding to its input or the difference of its inputs, assumption (x) requires the estimation
error is not infinitely large, assumption (xii) requires the value of X to be bounded, e.g., bounding the values to r0, 255s for
images. Assumption (xiii) is used to constrain that F has a finite first-order derivative.

(i) ppXq P C2 and EX„p

“

∥X∥22
‰

ă 8.

(ii) ωT pXq P C2 and EX„ωT

“

∥X∥22
‰

ă 8.

(iii) @t P r0, T s : fp¨, tq P C1, DC ą 0 @X P RD, t P r0, T s : ∥fpX, tq∥2 ď Cp1 ` ∥X∥2q.

(iv) DC ą 0,@X,Y P RD : ∥fpX, tq ´ fpY , tq∥2 ď C ∥X ´ Y ∥2.

(v) g P C and @t P r0, T s, |gptq| ą 0.

(vi) For any open bounded set O,
şT

0

ş

O ∥ptpXq∥22 ` Dgptq2 ∥∇XptpXq∥22 dX dt ă 8.

(vii) DC ą 0 @X P RD, t P r0, T s : ∥∇X log ptpXq∥2 ď Cp1 ` ∥X∥2q.

(viii) DC ą 0,@X,Y P RD : ∥∇X log ptpXq ´ ∇Y log ptpY q∥2 ď C ∥X ´ Y ∥2.

(ix) DC ą 0 @X P RD, t P r0, T s : ∥sθpX, tq∥2 ď Cp1 ` ∥X∥2q.

(x) DC ą 0,@X,Y P RD : ∥sθpX, tq ´ sθpY , tq∥2 ď C ∥X ´ Y ∥2.

(xi) Novikov’s condition:
E

”

exp
´

1
2

şT

0
∥∇X log ptpXq ´ sθpX, tq∥22 dt

¯ı

ă 8.

(xii) @t P r0, T s Dk ą 0 : ptpXq “ Ope´∥X∥k
2 q as ∥X∥2 Ñ 8.

(xiii) DC1 ą 0 and C2 ą 0 : |EX„q

“

X
‰

| ă C1 and |EX„pT

“

X
‰

| ă C2.

Proof. The proof is composed of two parts. First, we bounded the KL-divergence between the pT and the convex combination
X̂ . Second, we bound the KL-divergence between the generated distribution ω and the source distribution p and show the
convergence of Fpαq.



Part 1. The distribution of X̂ is in the form of the following convolution,

ωT pxq “

ż

1

αp1 ´ αq
ρp

x ´ τ

α
qqp

τ

1 ´ α
qdτ (2a)

“

ż

1

αp1 ´ αq

1
?
2π

e´
||x´τ ||22

2α2 qp
τ

1 ´ α
qdτ (2b)

“

ż

1

αp1 ´ αq

1
?
2π

e´
||x||22
2α2 e´p

||τ ||22
2α2 ´ xT τ

α2 qqp
τ

1 ´ α
qdτ (2c)

“
1

α
ρp

x

α
q

ż

1

1 ´ α
e´p

||τ ||22
2α2 ´ xT τ

α2 qqp
τ

1 ´ α
qdτ (2d)

“
1

α
ρp

x

α
q

ż

e´ 1
2α2 rp1´αq

2
||ν||

2
2´2p1´αqxT νsqpνqdν (2e)

“ ρpxq

ż

e´ 1
2α2 rp1´αq

2
||ν||

2
2´2p1´αqxT νsqpνqdν (2f)

“ ρpxqHpα,xq, (2g)

where Eq. (2a) is obtained by the independence of X and ϵ and the law of changing of random variable, Eq. (2b) and Eq. (2d)
are obtained by the definition of the Gaussian distribution, Eq. (2c) is obtained by decomposing the inner square, Eq. (2e) is
obtained by substituting τ “ p1 ´ αqν, and Eq. (2f) is obtained by using the law of changing of random variable again.

Then, the KL-divergence between pT and the convex combination ωT can be written as

KLppT ||ωT q “

ż

pT pxq log
pT pxq

ωT pxq
dx (3a)

“

ż

pT pxqrlog
pT pxq

ρpxq
´ logHpα,xqsdx (3b)

“ KLppT ||ρq ´

ż

pT pxq logHpα,xqdx (3c)

“ KLppT ||ρq ` Fpαq (3d)

where Eq. (3a) is the definition of the KL-divergence, Eq. (3b) is obtained from Eq. (2g).
Part 2. With assumption (i) to (xii), by implementing the Theorem 1 in [24], we have

KLpp||ωq ď JSM ` KLppT ||ρq ` Fpαq. (4)

Because, Fp1q “ 0 and F 1p1q “ EX„qrXsEX„pT
rXs, then by Taylor expansion, we have

Fpαq “ pα ´ 1qEX„qrXsEX„pT
rXs ` oppα ´ 1q2q. (5)

Thus, with assumption (xiii), as α goes to 1, Fpαq converges to 0.
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