
Details on the attack’s failure caused by floating-
point underflow errors. To analyze the reasons for the fail-
ure of the attack caused by floating-point underflow errors,
we selected Z = zy −maxi̸=y zi, which indicates the suc-
cess or failure of the attack based on its sign. We compared
the change of Z for samples attacked by PGD-100 with
CE loss but failed, and PGD-100 with MIFPE loss but suc-
ceeded. Figure 1 shows that for samples attacked with CE
loss, Z remains constant throughout the attack. In contrast,
for samples attacked with MIFPE loss, Z smoothly drops
below 0 after approaching 0. This phenomenon reveals that
floating-point rounding errors cause the calculated gradient
to be 0, resulting in a null perturbation added to the sample,
which keeps the example constant throughout the iteration
and causes the attack to fail.
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Figure 1. The changing process of the value of Z = zy −
maxi̸=y zi with the number of iterations during the attack on the
CIFAR10 dataset using the model from Neural level sets [1] and
single-precision arithmetic. The horizontal axes show the number
of iterations used so far, and the vertical axes show the value of Z.

Indirectly controls the values of zπ1−zπ2 can also re-
duce the impact of floating point errors. We know that
MIFPE controls zπ1 − zπ2, but this is just one of the com-
binations in zπ1 − zπi, i ∈ {2, 3, ...,K} . Therefore, we
asked what would happen if we used i ∈ {3, ...,K} instead
of i = 2 in MIFPE. To answer this, we designed an experi-
ment where we tested the model’s robustness using different
combinations of zπ1−zπi, i ∈ {2, 3, ...,K} in MIFPE. Fig-
ure 2 shows that all combinations reduce the overestimation
of model robustness caused by floating-point errors to vary-
ing degrees, but the optimal result is achieved for i = 2.
This is because controlling zπ1−zπi, i ∈ {3, ...,K} values
also indirectly controls the values of zπ1 − zπ2.

Floating-point rounding errors account for the ma-
jority of overestimation of robustness. To understand the
distribution of ∆ = zπ1−zπ2 on models with floating-point
errors leading to overestimation of robustness and to ana-
lyze whether floating-point rounding errors or floating-point
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Figure 2. We assess model robustness among different combina-
tion for zπ1 − zπi, (i ∈ 2, 3, ...,K) using 100 iterations of FT-
PGD with CE loss on the CIFAR-10 dataset under half-precision
floating-point arithmetic. The model is obtained from [15].

downflow errors account for the majority of floating-point
errors, we plotted the distribution of ∆ on twelve models
from [1–5, 8–13, 15], respectively. To further understand
how the T in the MIFPE loss function impacts the attack
effectiveness, we varied T from 10−1 to 103 on each model.
Figure 3 illustrates the ∆ = zπ1 − zπ2 distribution and ro-
bust accuracy with different T for the models.

We found that the range of ∆ varies dramatically for
the different defence models. Among them, none of the
∆ in Figure 3 [(a)-(k)] exceeds 20, which is much smaller
than the λ ≈ 103.28 for the single-precision floating-
point arithmetic, and the floating-point rounding errors are
the main reason for overestimating model robustness un-
der single-precision floating-point arithmetic. While only
in Figure 3 (l) most of the ∆ exceeds the λ ≈ 103.28 for
the single-precision floating-point arithmetic, the floating-
point underflow errors are the main reason for overestimat-
ing the model’s robustness under single-precision floating-
point arithmetic. In summary, Floating-point rounding er-
rors are the main reason for most of the overestimation of
model robustness caused by floating-point errors. In con-
trast, the overestimation of model robustness caused by
floating-point underflow errors is severe but rarely occurs.
We found that the best T values for all models are usually
close to 1. So we used the factor T = 1 in all our experi-
ments.

When floating-point errors are not the primary cause
of overestimation. We evaluated the performance of
MIFPE on rare models that suffer from overestimation due
to a typical gradient masking problem that the flat loss sur-
face in the input space, rather than floating-point errors.
The results, presented in Figure Figure 4, demonstrate that
MIFPE can significantly reduce the problem of overestima-
tion of model robustness by adjusting the T value, even
when floating-point errors are not the primary cause of over-
estimation.
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Figure 3. The ∆ = zπ1 − zπ2 distribution (top) and robust accuracy with different T (bottom) for the models of [1–5, 8–13, 15]. The
distribution is averaged over 100 bins. The model’s robustness is tested under single-precision floating-point arithmetic using PGD with
100 iterations and the CE loss and MIFPE loss, respectively.
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Figure 4. The ∆ = zπ1 − zπ2 distribution (top) and robust accuracy with different T (bottom) for the models of [6,7,14]. The distribution
is averaged over 100 bins. The model’s robustness is tested under single-precision floating-point arithmetic using PGD with 100 iterations
and the CE loss and MIFPE loss, respectively.
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