Details on the attack’s failure caused by floating-
point underflow errors. To analyze the reasons for the fail-
ure of the attack caused by floating-point underflow errors,
we selected Z = z,, — max; -, z;, which indicates the suc-
cess or failure of the attack based on its sign. We compared
the change of Z for samples attacked by PGD-100 with
CE loss but failed, and PGD-100 with MIFPE loss but suc-
ceeded. Figure | shows that for samples attacked with CE
loss, Z remains constant throughout the attack. In contrast,
for samples attacked with MIFPE loss, Z smoothly drops
below 0 after approaching 0. This phenomenon reveals that
floating-point rounding errors cause the calculated gradient
to be 0, resulting in a null perturbation added to the sample,
which keeps the example constant throughout the iteration
and causes the attack to fail.
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Figure 1. The changing process of the value of Z = z, —

max;+y z; with the number of iterations during the attack on the
CIFAR10 dataset using the model from Neural level sets [1] and
single-precision arithmetic. The horizontal axes show the number
of iterations used so far, and the vertical axes show the value of Z.

Indirectly controls the values of z,; — z,5 can also re-
duce the impact of floating point errors. We know that
MIFPE controls z;1 — zr2, but this is just one of the com-
binations in z,1 — z.;,7 € {2,3,..., K} . Therefore, we
asked what would happen if we used i € {3, ..., K'} instead
of ¢ = 2 in MIFPE. To answer this, we designed an experi-
ment where we tested the model’s robustness using different
combinations of z,1 — 2z, % € {2, 3, ..., K} in MIFPE. Fig-
ure 2 shows that all combinations reduce the overestimation
of model robustness caused by floating-point errors to vary-
ing degrees, but the optimal result is achieved for i = 2.
This is because controlling .1 — zr;, ¢ € {3, ..., K} values
also indirectly controls the values of z;1; — Z2.

Floating-point rounding errors account for the ma-
jority of overestimation of robustness. To understand the
distribution of A = z;1 —z,2 on models with floating-point
errors leading to overestimation of robustness and to ana-
lyze whether floating-point rounding errors or floating-point

90
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T Zpl —Zzz T Zpl — Zng
801 —— 2. — 2z Zr1 — Zrg
T Zpl — Zzs T Zxl — Zr10
—— PGD (accuracy baseline)

Robust Accuracy (%)
= =

t
(==

107! 100 10* 10% 103

Figure 2. We assess model robustness among different combina-
tion for z,1 — zxi, (2 € 2,3, ..., K) using 100 iterations of FT-
PGD with CE loss on the CIFAR-10 dataset under half-precision
floating-point arithmetic. The model is obtained from [15].

downflow errors account for the majority of floating-point
errors, we plotted the distribution of A on twelve models
from [1-5, 8—13, 15], respectively. To further understand
how the 7" in the MIFPE loss function impacts the attack
effectiveness, we varied T from 10~ ! to 103 on each model.
Figure 3 illustrates the A = z,1 — z,2 distribution and ro-
bust accuracy with different 7" for the models.

We found that the range of A varies dramatically for
the different defence models. Among them, none of the
A in Figure 3 [(a)-(k)] exceeds 20, which is much smaller
than the A ~ 103.28 for the single-precision floating-
point arithmetic, and the floating-point rounding errors are
the main reason for overestimating model robustness un-
der single-precision floating-point arithmetic. While only
in Figure 3 (1) most of the A exceeds the A ~ 103.28 for
the single-precision floating-point arithmetic, the floating-
point underflow errors are the main reason for overestimat-
ing the model’s robustness under single-precision floating-
point arithmetic. In summary, Floating-point rounding er-
rors are the main reason for most of the overestimation of
model robustness caused by floating-point errors. In con-
trast, the overestimation of model robustness caused by
floating-point underflow errors is severe but rarely occurs.
We found that the best 7" values for all models are usually
close to 1. So we used the factor 7' = 1 in all our experi-
ments.

When floating-point errors are not the primary cause
of overestimation. We evaluated the performance of
MIFPE on rare models that suffer from overestimation due
to a typical gradient masking problem that the flat loss sur-
face in the input space, rather than floating-point errors.
The results, presented in Figure Figure 4, demonstrate that
MIFPE can significantly reduce the problem of overestima-
tion of model robustness by adjusting the 7' value, even
when floating-point errors are not the primary cause of over-
estimation.
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Figure 4. The A = z,1 — z2 distribution (top) and robust accuracy with different T'(bottom) for the models of [0, 7, 14]. The distribution
is averaged over 100 bins. The model’s robustness is tested under single-precision floating-point arithmetic using PGD with 100 iterations
and the CE loss and MIFPE loss, respectively.
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