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In this supplement, we describe (1) the derivation of our
training loss, (2) the implementation details of data pre-
processing, our model architecture, and key frame genera-
tion, (3) experiment results on the additional benchmark on
COIN dataset, and (4) additional ablation studies on open-
vocabulary recognition, the effects of using ASR phrases
and backbone architecture. For sections, figures, tables, and
equations, we use numbers (e.g., Sec. 1) to refer to the main
paper and capital letters (e.g., Sec. A) to refer to this sup-
plement.

A. Derivation of Training Loss

Our method aims at minimizing the negative log likeli-
hood − log p(Y |X) (Eq. 1 in paper). Here, we provide the
derivation of its evidence lower bound, as shown in Eq. A,
where xi are video embeddings learned by our video en-
coder f(·), yi are text embeddings offered by a pre-trained
text encoder g(·) from CLIP [12] that remains fixed during
our training. {xi} and {yi} are observed video and text em-
beddings, while xj and yj are the missing (masked) video
and text embeddings.

There are three terms in the evidence lower bound, with
each one corresponding to a loss in our main paper. First,
p(yi|xi) is computed by Eq. 6 of the paper, as a softmax
over the cosine similarity between an input video embed-
ding and a set of text embeddings. This term corresponds
to the loss LXE (Eq. 8). Second, p(xj |{xi}i ̸=j) is ap-
proximated using a diffusion model that consists of a dif-
fusion process and an reverse diffusion (denoising) pro-
cess. This term is performed by the loss LMSE (Eq. 9).
Third, p(yj |xj) seeks to predict text embedding yj using
the masked video embedding xj . It is again calculated by
Eq. 6 of the paper. This term corresponds to LMC (Eq. 10).

*Work done while Yiwu Zhong was an intern at Meta.
†Co-corresponding authors.

B. Additional Implementation Details
Data Pre-processing: During pre-training, we used the
timestamps of ASR sentences to segment video clips from
full videos. For step classification, the video clips are
trimmed by human-annotated step boundaries. When eval-
uating step classification, multi-view augmentation is ap-
plied with 3 clips sampled on the temporal dimension.
For step forecasting (both training and evaluation), we
cropped 68 seconds of video before the target action and
uniformly cut it into 8 video clips as the model input. For
HowTo100M [10] and COIN dataset [13, 14], we sampled
1 frame per second. For EPIC-Kitchens-100 dataset [2],
we sampled 16 frames per second. The text embedding of
each verb phrase was the averaged embedding over 28 ac-
tion prompts1.

Model Architecture and Hyper-parameters: We adopted
TimeSformer architecture [1] for our video encoder.
TimeSformer is a Transformer [15] based model that ap-
plies attention mechanism over both spatial and temporal di-
mension. For denoising model, we used Transformer from
CLIP’s implementation2 with bi-directional attention. In
denoising model, we implemented the maximum time level
T as 4, maximum length of video sequence as 9, and the
number of Transformer layers as 4. For time variable in dif-
fusion model, we first mapped it into vector representation
using position embeddings and then added it to the input of
Transformer. When calculating the matching score between
video and text embedding (Eq. 4 in main paper), we divided
the matching score by a temperature τ = 0.02 when com-
puting the softmax.

Details about Future Key Frame Generation: Future key
frame generation is posed as text guided image-to-image
translation, where the text is provided by our predicted step
and the image is from a sampled frame within the current
video. Specifically, we use a pre-trained stable diffusion

1https://github.com/openai/CLIP/blob/main/data/prompts.md#kinetics700
2https://github.com/openai/CLIP
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Model Pretraining Top-1
Supervision Dataset Acc. (%)

1 TSN (RGB+Flow) [13] Supervised: action labels Kinetics 73.4*
2 S3D [16] Unsupervised: ASR w. MIL-NCE [9] HT100M 70.2*

3 SlowFast [3] Supervised: action labels Kinetics 71.6
4 TimeSformer [1] Supervised: action labels Kinetics 83.5
5 ClipBERT [5] Supervised: captions COCO+VG 65.4
6 VideoCLIP [17] Unsupervised: ASR HT100M 72.5
7 TimeSformer [1] Unsupervised: ASR w. MIL-NCE [9] HT100M 85.3
8 DistantSup [7] Unsupervised: ASR + wikiHow HT100M 88.9
9 Ours Unsupervised: ASR HT100M 90.8

Table A. Procedural activity classification on COIN dataset. * indicates the model is fully fine-tuned on COIN dataset.

model3 and employ SDEdit [8]. SDEdit adds noise to the
sampled input video frame, and then denoises the resulting
image using stable diffusion model and the text of our pre-
dicted step, in order to generate a future video frame.

C. Additional Benchmarks
C.1. Procedural Activity Classification

We follow the benchmark in DistantSup [7] to evaluate
procedural activity recognition on COIN with top-1 accu-
racy reported. Given a video that has recorded multiple
steps, the model classifies the entire video into an activity
category (e.g., “make coffee”). Similar to step forecasting,
we only fine-tune the diffusion model to predict activity cat-
egory, with the frozen video encoder as a feature extractor.

In Table A, we compare our model with a series of base-
lines as in DistantSup [7], such as SlowFast [3], TimeS-
former [1] and S3D [16]. These baselines are pre-trained
by either human-annotated action labels or video ASR sen-
tences. Our closest competitor is DistantSup [7] which
learns individual action concepts by leveraging an external
text knowledge base (wikiHow). Our model clearly outper-
forms all baseline models by a large margin (e.g., +1.9 over
DistantSup in L8). Our experimental results suggest that
our order pre-training approach, which captures the order
among steps, can also improve the recognition of the entire

3https://github.com/CompVis/stable-diffusion

COIN steps Step descriptions during pre-training

fry eggs fry chicken, lay eggs

calibrate the liquid calibrate the meter

scrub the bathtub clean the bathroom

chase for the frisbee –

knead the meat cut the meat, cook the meat

bake pizza bake soda, bake powder, make pizza

put the sheet on the bed take a sheet, make a sheet

melt the wax with water melt the plastic, melt the cheese, put wax

wet and wash the hair moisturize hair, rinse hair, wet my brush

place light into pumpkin place your lights, adjust the light

Table B. Visualization of step concepts. We show COIN steps
(left) and the step descriptions in pre-training (HowTo100M) that
have common verb/noun (right).

sequence of steps, even if it was not designed for this task.

D. Additional Ablation Studies

We present additional ablation studies on our model. The
experiment settings follow the ablation study in the main
paper, unless otherwise noticed.

Can our model identify open-vocabulary step concepts?
Part of our learning objective is to match the video rep-
resentations with text embeddings. Such a design allows
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Figure A. Per-category top-1 accuracy for zero-shot step classifi-
cation and forecasting. We rank the step concepts in COIN dataset
by calculating its maximum BLEU-1 score [11] versus all step de-
scriptions used in pre-training.

our model to support zero-shot recognition as we demon-
strated in the paper. One natural question is how well our
model performs during zero-shot recognition when facing
step concepts that have not been seen during pre-training.

Figure A measures the overlap between step concepts
during pre-training (from ASR results on HowTo100M)
and during zero-shot recognition (from human-annotated
categories on COIN), and reports per-category results for
both seen and novel step categories. Specifically, we adopt
BLEU-1 score [11] to match the step concepts, and report
per-category top-1 accuracy for zero-shot step classification
and forecasting. BLEU-1 score as zero indicates the novel
steps and BLEU-1 score as one suggests that the exact steps
have been seen during pre-training. In addition, we show
the steps that have a common verb/noun as COIN steps in
Table B.

We find that our model achieves high accuracy even if
facing novel steps, i.e. the steps have low BLEU-1 score
(e.g., 90.5% for “fry eggs”). Further, we compute the top-
1 accuracy for the steps with high BLEU-1 scores (e.g.,
≥ 0.7) and the steps with low BLEU-1 scores (e.g., < 0.7).
These two groups include 103 and 675 steps, respectively,
and have close top-1 accuracy across tasks (e.g., 15.9 vs.
16.7 for step classification, 14.2 vs. 10.9 for step forecast-
ing). These results suggest that our model is not limited

Source Zero-shot Fine-tuning
Classification Forecasting Classification Forecasting

wikiHow sentences 11.6 8.3 48.6 38.0
ASR phrases 11.8 9.0 47.8 38.9

Table C. Ablation study on different sources of step descriptions.
Top-1 accuracy (%) on COIN dataset is reported. All models are
pre-trained on a subset of HowTo100M dataset, defined by [1, 7].

Source Zero-shot
Classification Forecasting

Ours (TimeSformer) 16.6 11.3
Ours (MViT-S) 12.5 9.0

Table D. Ablation study on the different architectures of video en-
coder. All models are pre-trained on HowTo100M dataset.

to the step concepts considered in pre-training and supports
open-vocabulary step recognition. We conjecture that our
model has learned the components from similar phrases
(e.g., “fry chicken” and “lay eggs” shown in Table B),
by learning to project video embeddings into the semantic
space defined by the text embeddings of CLIP.

Are ASR phrases sufficient to learn step concepts? We
propose to use the step phrases parsed from video ASR
sentences for learning step concepts. The latest work Dis-
tantSup [7] found that external text corpus for procedure
activities (e.g., wikiHow [4]) can largely reduce the noise in
ASR sentences. In this section, we explore using wikiHow
sentences to pre-train our model.

In Table C, we compare our model with a variant pre-
trained using wikiHow sentences, following [7]. Our results
demonstrate that ASR phrases are sufficient to achieve com-
petitive results across tasks and settings (e.g., +0.7/+0.9 for
step forecasting across zero-shot and fine-tuning settings).
In other word, our model only requires ASR phrases gener-
ated from audio transcriptions of videos, without the need
of an external text corpus describing the procedural activi-
ties as in [7].

Backbone Architecture of Video Encoder. In Table D, we
study the effects of backbone architectures for our video en-
coder. We replace the default backbone TimeSformer with
MViT-S [6] which is also a widely-used architecture for
video encoders. We slightly increase the frame sampling
rate of MViT-S from the default value of 4 to 6 so that the
encoder can take a longer video (e.g., on COIN, the average
duration of a step is 14 seconds). TimeSformer consistently
outperforms MViT-S across tasks (e.g., +4.1 on step clas-
sification). We conjecture that TimeSformer, which sam-
ples 8 frames from consecutive 256 frames, is better suited
for recognizing actions with long durations, such as COIN
steps. Conversely, MViT-S, which samples 16 frames from
consecutive 96 frames, may perform better for recognizing
actions with short durations and high-speed motion.
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