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Appendix Overview
This supplementary document provides additional de-

tails to support our main manuscript, organized as follows:
• Appendix A presents the 3D-VQ architectures and the

transformer models in MAGVIT.
• Appendix B includes additional implementation details

in training and evaluation.
• Appendix C provides more quantitative evaluation re-

sults, which include:
– Comparisons to more published results on the three

benchmarks in the paper: UCF-101 [31], BAIR [12,
36], and Kinetics-600 [6].

– Multi-task results on Something-Something-v2
(SSv2) [14].

– Results on three additional datasets: NuScenes [5],
Objectron [3] and Web video datasets.

• Appendix D shows more qualitative examples of the gen-
erated videos.
We present a demo video for MAGVIT and show more

generated examples on this web page1 .

1https://magvit.cs.cmu.edu

A. MAGVIT Model Architecture
A.1. 3D-VQ Tokenizer

Fig. 7 shows the architectures of the MAGVIT 3D-
VQ module and compares it with the 3D-VQ module in
TATS [13] which held the previous state-of-the-art for video
generation. Compared with TATS, the major design choices
in MAGVIT 3D-VQ are listed below.

• Average pooling, instead of strided convolution, is
used for down-sampling.

• Nearest resizing and convolution are used for up-
sampling.

• We use spatial down- and up-sampling layers near
the latent space and spatial-temporal down- and up-
sampling layers near the pixel space, resulting in mir-
rored encoder-decoder architecture.

• A single deeper 3D discriminator is designed rather
than two shallow discriminators for 2D and 3D sep-
arately.

• We quantize into a much smaller vocabulary of 1,024
as compared to 16,384.

• We use group normalization [43] instead of batch nor-
malization [20] and Swish [26] activation function in-
stead of SiLU [16].

• We use the LeCAM regularization [34] to improve the
training stability and quality.

The quantitative comparison of the 3D-VQ from TATS
and MAGVIT were presented in Table 6 of the main pa-
per. In addition, Fig. 9 below qualitatively compares
their reconstruction quality on UCF-101. Figs. 10 and 11
show MAGVIT’s high-quality reconstruction on example
YouTube videos.

We design two variants of the MAGVIT 3D-VQ module,
i.e., the base (B) with 41M parameters and the large (L) with
158M parameters, excluding the discriminators.

A.2. Transformer

MAGVIT uses the BERT transformer architecture [10]
adapted from the Flaxformer implementation2. Following
the transformer configurations in ViT [11], we use two vari-
ants of transformers, i.e., base (B) with 87M parameters and
large (L) with 306M in all our experiments. Tab. 8 lists the

2https://github.com/google/flaxformer
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Figure 7. Comparison of 3D-VQ model architectures between MAGVIT and the TATS [13]. We highlight the blocks with major
differences in gray background and detail their design differences in Appendix A.1. We train the models to quantize 16-frame clips
of 128×128 resolution into 4 × 16 × 16 tokens. The number of parameters in parentheses are broken down between VQVAE and
discriminators.

detailed configurations for each variant. A huge (H) trans-
former is only used to train on the large Web video dataset
and generate demo videos.

B. Implementation Details

B.1. Task Definitions

We employ a total of ten tasks for multi-task video gener-
ation. Each task is characterized by a few adjustable settings
such as interior condition shape, padding function, and op-
tionally prefix condition. Fig. 8 illustrates the interior con-
dition regions for each task under the above setup. Given a
video of shape T×H×W , we define the tasks as following:
• Frame Prediction (FP)

– Interior condition: t frames at the beginning; t = 1.
– Padding: replicate the last given frame.

• Frame Interpolation (FI)
– Interior condition: t1 frames at the beginning and t2

frames at the end; t1 = 1, t2 = 1.
– Padding: linear interpolate between the last given

frame at the beginning and the first given frame at the
end.

• Central Outpainting (OPC)
– Interior condition: a rectangle at the center with height
h and width w; h = 0.5H , w = 0.5W .

– Padding: pad the nearest pixel for each location (edge
padding).

• Vertical Outpainting (OPV)
– Interior condition: a centered vertical strip with width
w; w = 0.5W .

– Padding: edge padding.
• Horizontal Outpainting (OPH)

– Interior condition: a centered horizontal strip with
height h; h = 0.5H .

– Padding: edge padding.
• Dynamic Outpainting (OPD)

– Interior condition: a moving vertical strip with width
w; w = 0.5W .

– Direction of movement: left to right.
– Padding: zero padding.
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Model Param. # heads # layers Hidden size MLP dim

MAGVIT-B 87 M 12 12 768 3072
MAGVIT-L 305 M 16 24 1024 4096
MAGVIT-H 634 M 16 32 1280 5120

Table 8. Transformer architecture configurations used in MAGVIT.

(a) FP (b) FI (c) OPC (d) OPV

(e) OPH (f) OPD (g) IPC (h) IPD

(i) CG (j) CFP

Figure 8. Interior condition regions for each task, where green
denotes valid pixels and white pixels denote the task-specific
paddings discussed in Appendix B.1. The tasks are Frame Predic-
tion (FP), Frame Interpolation (FI), Central Outpainting (OPC),
Vertical Outpainting (OPV), Horizontal Outpainting (OPH), Dy-
namic Outpainting (OPD), Central Inpainting (IPC), Dynamic In-
painting (IPD), Class-conditional Generation (CG), and Class-
conditional Frame Prediction (CFP).

• Central Inpainting (IPC)
– Interior condition: everything but a rectangle at the

center with height h and width w; h = 0.5H , w =
0.5W .

– Padding: zero padding.
• Dynamic Inpainting (IPD)

– Interior condition: everything but a vertically cen-
tered moving rectangle with height h and width w;
h = 0.5H , w = 0.5W .

– Direction of movement: left to right.
– Padding: zero padding.

• Class-conditional Generation (CG)
– Prefix condition: class label.

• Class-conditional Frame Prediction (CFP)
– Prefix condition: class label.
– Interior condition: t frames at the beginning; t = 1.
– Padding: replicate the last given frame.

B.2. Training

MAGVIT is trained in two stages where we first train
the 3D-VQ tokenizer and then train the transformer with a

frozen tokenizer. We follow the same learning recipe across
all datasets, with the only variation in the number of training
epochs. Here are the training details for both stages:
• 3D-VQ:

– Video: 16 frames, frame stride 1, 128×128 resolution.
(64×64 resolution for BAIR)

– Base channels: 64 for B, 128 for L.
– VQVAE channel multipliers: 1, 2, 2, 4.

(1, 2, 4 for 64×64 resolution).
– Discriminator channel multipliers: 2, 4, 4, 4, 4.

(2, 4, 4, 4 for 64×64 resolution)
– Latent shape: 4×16×16.
– Vocabulary size: 1,024.
– Embedding dimension: 256.
– Initialization: central inflation from a 2D-VQ trained

on ImageNet with this setup.
– Peak learning rate: 10−4.
– Learning rate schedule: linear warm up and

cosine decay.
– Optimizer: Adam with β1 = 0 and β2 = 0.99.
– Generator loss type: Non-saturating.
– Generator adversarial loss weight: 0.1.
– Perceptual loss weight: 0.1.
– Discriminator gradient penalty: r1 with cost 10.
– EMA model decay rate: 0.999.
– Batch size: 128 for B, 256 for L.
– Speed: 0.41 steps/sec on 16 TPU-v2 chips for B,

0.56 steps/sec on 32 TPU-v4 chips for L.
• Transformer:

– Sequence length: 1026.
– Hidden dropout rate: 0.1.
– Attention dropout rate: 0.1.
– Mask rate schedule: cosine.
– Peak learning rate: 10−4.
– Learning rate schedule: linear warm up and

cosine decay.
– Optimizer: Adam with β1 = 0.9 and β2 = 0.96.
– Weight decay 0.045.
– Label smoothing: 10−4.
– Max gradient norm: 1.
– Batch size: 256.
– Speed: 1.24 steps/sec on 16 TPU-v2 chips for B,

2.70 steps/sec on 32 TPU-v4 chips for L.
Using more hardware resources can speed up the train-

ing. We train MAGVIT models for each dataset separately.
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Dataset 3D-VQ Transformer
B L B L

UCF-101 500 2000 2000 2000
BAIR 400 800 400 800
BAIR-MT 400 800 1200 1600
Kinetics-600 45 180 180 360
SSv2 135 400 720 1440
nuScenes 1280 5120 2560 10240
Objectron 1000 2000 1000 2000
Web 5 20 10 20

Table 9. Training epochs for each dataset.

The training epochs for each dataset are listed in Tab. 9.

B.3. Evaluation

Evaluation metrics. The FVD [36] is used as the primary
evaluation metric. We follow the official implementation3

in extracting video features with an I3D model trained on
Kinetics-400 [7]. We report Inception Score (IS) [28]4 on
the UCF-101 dataset which is calculated with a C3D [33]
model trained on UCF-101. We further include image qual-
ity metrics: PSNR, SSIM [40] and LPIPS [46] (computed
by the VGG features) on the BAIR dataset.

Sampling protocols. We follow the sampling protocols
from previous works [9, 13] when eveluating on the stan-
dard benchmarks, i.e. UCF-101, BAIR, and Kinetics-600.
We sample 16-frame clips from each dataset without re-
placement to form the real distribution in FVD and extract
condition inputs from them to feed to the model. We con-
tinuously run through all the samples required (e.g., 40,000
for UCF-101) with a single data loader and compute the
mean and standard deviation for 4 folds. When evaluating
on other datasets, due to the lack of prior works, we adapt
the above protocol based on the dataset size to ensure sam-
ple diversity.

For our MAGVIT model, we use the following COM-
MIT decoding hyperparameters by default: cosine sched-
ule, 12 steps, temperature 4.5. Below are detailed setups
for each dataset:
• UCF-101:

– Dataset: 9.5K videos for training, 101 classes.
– Number of samples: 10,000×4.
– Resolution: 128×128.
– Real distribution: random clips from the training

videos.
• BAIR:

3https : / / github . com / google - research / google -
research/tree/master/frechet_video_distance

4https://github.com/pfnet-research/tgan2

– Dataset: 43K videos for training and 256 videos for
evaluation.

– Number of samples: 25,600×4.
– Resolution: 64×64.
– Real distribution: the first 16-frame clip from each

evaluation video.
– COMMIT decoding: exponential schedule, tempera-

ture 400.
• Kinetics-600:

– Dataset: 384K videos for training and 29K videos for
evaluation.

– Number of samples: 50,000×4.
– Generation resolution: 128×128.
– Evaluation resolution: 64×64, via central crop and bi-

linear resize.
– Real distribution: 6 sampled clips (2 temporal win-

dows and 3 spatial crops) from each evaluation video.
– COMMIT decoding: uniform schedule, temperature

7.5.
• SSv2:

– Dataset: 169K videos for training and 24K videos for
evaluation, 174 classes.

– Number of samples: 50,000×4.
– Resolution: 128×128.
– Real distribution for the CG task: random clips from

the training videos.
– Real distribution for the other tasks: 2 sampled clips (2

temporal windows and central crop) from each evalua-
tion video.

• nuScenes:
– Dataset: 5.4K videos for training and 0.6K videos for

evaluation, front camera only, 32 frames per video.
– Number of samples: 50,000×4.
– Resolution: 128×128.
– Real distribution: 48 sampled clips (16 temporal win-

dows and 3 spatial crops) from each evaluation video.
• Objectron:

– Dataset: 14.4K videos for training and 3.6K videos for
evaluation.

– Number of samples: 50,000×4.
– Resolution: 128×128.
– Real distribution: 5 sampled clips (5 temporal win-

dows and central crop) from each evaluation video.
• Web videos:

– Dataset: ∼12M videos for training and 26K videos for
evaluation.

– Number of samples: 50,000×4.
– Resolution: 128×128.
– Real distribution: randomly sampled clips from evalu-

ation videos.

For the “random clips” above, we refer to the combina-
tion of a random temporal window and a random spatial
crop on a random video. For the fixed number of “tempo-
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Method
Extra
Video Class FVD↓ IS↑

VGAN [39] ✓ - 8.31±0.09

TGAN [27] - 11.85±0.07

MoCoGAN∗ [35] ✓ - 12.42±0.07

ProgressiveVGAN [2] ✓ - 14.56±0.05

TGAN [27] ✓ - 15.83±0.18

RaMViD [19] - 21.71±0.21

LDVD-GAN [21] - 22.91±0.19

StyleGAN-V∗# [30] - 23.94±0.73

VideoGPT [44] - 24.69±0.30

TGANv2 [28] ✓ 1209±28 28.87±0.67

MoCoGAN-HD# [32] 838 32.36
DIGAN [45] 655±22 29.71±0.53

DIGAN# [45] 577±21 32.70±0.35

DVD-GAN# [9] ✓ - 32.97±1.70

Video Diffusion∗# [17] - 57.00±0.62

TATS [13] 420±18 57.63±0.24

CCVS+StyleGAN# [22] 386±15 24.47±0.13

Make-A-Video∗ [29] ✓ 367 33.00
TATS [13] ✓ 332±18 79.28±0.38

CogVideo∗ [18] ✓ ✓ 626 50.46
Make-A-Video∗ [29] ✓ ✓ 81 82.55

MAGVIT-B-CG (ours) ✓ 159±2 83.55±0.14

MAGVIT-L-CG (ours) ✓ 76±2 89.27±0.15

Table 10. Generation performance on the UCF-101 dataset.
Methods in gray are pretrained on additional large video data.
Methods with ✓ in the Class column are class-conditional, while
the others are unconditional. Methods marked with ∗ use custom
resolutions, while the others are at 128×128. Methods marked
with # additionally used the test set in training.

ral windows” or “spatial crops”, deterministic uniform sam-
pling is used.

For the image quality metrics on BAIR in Table 3 of the
main paper, CCVS [22] generates at 256 × 256 while the
others are at 64 × 64. When calculating PSNR and SSIM,
we follow [38] in using the best value from 100 trials for
each evaluation video.

Debiased FVD on BAIR Computing FVD is difficult on
the BAIR dataset due to its small evaluation target of only
256 16-frame clips. Following the standard evaluation pro-
tocol, we generate 100 predictions for each clip to create
256,00 samples [4].

The real distribution to compute FVD in this way is
highly biased with the insufficient evaluation videos [36].
We can see this by a simple experiment where we compute
the training FVD with only 256 training videos. We observe
that this 256-sample training FVD (64) is far worse than the

Method K600 FVD↓ BAIR FVD↓
LVT [25] 224.7 126±3

Video Transformer [41] 170.0±5.0 94±2

CogVideo∗ [18] 109.2 -
DVD-GAN-FP [9] 69.1±1.2 110
CCVS [22] 55.0±1.0 99±2

Phenaki [37] 36.4±0.2 97
VideoGPT [44] - 103
TrIVD-GAN-FP [23] 25.7±0.7 103
Transframer [24] 25.4 100
MaskViT [15] - 94
FitVid [4] - 94
MCVD [38] - 90
NÜWA [42] - 87
RaMViD [19] 16.5 84
Video Diffusion [17] 16.2±0.3 -

MAGVIT-B-FP (ours) 24.5±0.9 76±0.1 (47±0.1)
MAGVIT-L-FP (ours) 9.9±0.3 62±0.1 (31±0.2)

Table 11. Frame prediction performance on the BAIR and
Kinetics-600 datasets. - marks that the value is unavailable in
their paper or incomparable to others. The FVD in parenthe-
ses uses a debiased evaluation protocol on BAIR detailed in Ap-
pendix B.3. Methods marked with ∗ is pretrained on additional
large video data.

regular training FVD with all 43K videos (13), showing the
biased FVD computation.

To bridge the gap, we use uniformly sampled 16-frame
clips from the 256 30-frame evaluation videos, which re-
sults in 256 × 15 = 3840 clips. The uniform sampling
yields a better representation of the evaluation set. Under
this new protocol, MAGVIT-L-FP achieves FVD 31 instead
of 62, which is more aligned with its training set perfor-
mance (FVD=8).

We report this “debiased FVD” in addition to the stan-
dard FVD computation on the BAIR dataset, with the de-
fault COMMIT decoding hyperparameters. We also use
it for BAIR multi-task evaluation and ablation studies on
BAIR .

C. Additional Quantitative Evaluation

Class-conditional generation. Tab. 10 shows a detailed
comparison with the previously published results on the
UCF-101 [31] class-conditional video generation bench-
mark, where the numbers are quoted from the cited papers.
Note that CogVideo [18] and Make-A-Video [29] are pre-
trained on additional 5-10M videos before finetuning on
UCF-101, where Make-A-Video further uses a text-image
prior trained on a billion text-image pairs. The remaining
models, including MAGVIT, are only trained on 9.5K train-
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Method Task Avg↓ FP FI OPC OPV OPH OPD IPC IPD CG CFP

MAGVIT-B-UNC Single 258.8 278.8 91.0 67.5 27.3 36.2 711.5 319.3 669.8 107.7 279.0
MAGVIT-B-FP Single 402.9 59.3 76.2 213.2 81.2 86.3 632.7 343.1 697.9 1780.0 59.3

MAGVIT-B-MT Multi 43.4 71.5 38.0 38.8 23.3 26.1 33.4 23.3 25.3 94.7 59.3
MAGVIT-L-MT Multi 27.3 33.8 25.0 21.1 16.8 17.0 23.5 13.5 15.0 79.1 28.5

Masked pixel - - 94% 87% 75% 50% 50% 50% 25% 25% 100% 94%
Masked token - - 75% 50% 75% 50% 50% 50% 25% 25% 100% 75%

Table 12. Multi-task generation performance on Something-Something-V2 evaluated by FVD. Gray values denote unseen tasks during
training. The bottom two rows list the proportions of masked pixels and tokens for each task.

Method nuScenes-FP Objectron-FI Web-MT8 FP FI OPC OPV OPH OPD IPC IPD

MAGVIT-B 29.3 - 33.0 84.9 33.9 34.4 21.5 22.1 26.0 20.7 20.4
MAGVIT-L 20.6 26.7 21.6 45.5 30.9 19.9 15.3 14.5 20.2 12.0 14.7

Table 13. Generation performance on NuScenes, Objectron, and Web videos evaluated by FVD.

ing videos of UCF-101, or 13.3K training and testing videos
of UCF-101 for those marked with #. Fig. 12 provides a vi-
sual comparison to the baseline methods.

As shown, even the smaller MAGVIT-B performs favor-
ably against previous state-of-the-art model TATS [13] by a
large margin. MAGVIT-L pushes both the FVD (332 →
76, ↓ 77%) and IS (79.28 → 89.27, ↑ 13%) to a new
level, while outperforming the contemporary work Make-
A-Video [29] which is pretrained on significantly large ex-
tra training data.

Frame prediction. For the frame prediction task on
BAIR Robot Pushing [12, 36] (1-frame condition) and
Kinetics-600 [6] (5-frame condition), Tab. 11 provides a
detailed comparison with previously published results. We
use “-” to mark the FVDs that either is unavailable in their
paper or incomparable to others. For example, Video Dif-
fusion [17]’s FVD reported in their paper was on a different
camera angle (top-down view image main5) and is hence
incomparable to others.

MAGVIT achieves state-of-the-art quality in terms of
FVD on both datasets, with a 39% relative improvement
on the large-scale Kinetics benchmark than the highly-
competitive Video Diffusion baseline [17]. Fig. 13 and
Fig. 14 below provide visual comparisons to the baseline
methods on BAIR and Kinetics-600, respectively.

Multi-task video generation. Having verified single-task
video generation, Tab. 12 shows per-task performance of
the ten tasks on the large-scale Something-Something-v2
(SSv2) [14] dataset, with the proportions of masks in both

5https://www.tensorflow.org/datasets/catalog/
bair_robot_pushing_small

pixel and token spaces. SSv2 is a challenging dataset
commonly used for action recognition, whereas this work
benchmarks video generation on it for the first time. On
this dataset, a model needs to synthesize 174 basic actions
with everyday objects. Fig. 15 shows examples of generated
videos for each task on this dataset.

We compare the multi-task models (MT) with two
single-task baselines trained on unconditional generation
(UNC) and frame prediction (FP). The multi-task models
show consistently better average FVD across all tasks com-
pared with the single-task baselines.

Results on nuScenes, Objectron, and 12M Web Videos.
Tab. 13 shows the generation performance on three ad-
ditional datasets, i.e., nuScenes [5], Objectron [3], and
12M Web videos which contains 12 million videos we
collected from the web. We evaluate our model on the
frame prediction task on nuScenes, the frame interpolation
task on Objectron, and the 8-task suite on the Web videos.
Fig. 16 shows examples of generated videos for each task.
The results substantiate the generalization performance of
MAGVIT on videos from distinct visual domains and the
multi-task learning recipe on large-scale data.

Tokenizer reconstruction. We report the image quality
metrics (PSNR, SSIM, LPIPS) for the VQGAN reconstruc-
tion in Tab. 14. We compare MAGVIT 3D against the base-
line MaskGIT 2D to highlight our 3D design while keeping
the remaining components the same. As shown, the results
in Tab. 14 are consistent with the findings by FVD in Tab.
6.
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VQ Tokenizer From Scratch ImageNet Initialization
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

MaskGIT 2D 21.4 0.667 0.139 21.5 0.685 0.114 -

Average Central
MAGVIT 3D-L 21.8 0.690 0.113 21.9 0.697 0.103 22.0 0.701 0.099

Table 14. Image quality metrics of different tokenizers on UCF-101 training set reconstruction.

D. Qualitative Examples

D.1. High-Fidelity Tokenization

Comparison of tokenizers. Fig. 9 compares the recon-
struction quality of the three VQ tokenizers on the UCF-
101, including the 2D-VQ from MaskGIT [8], the 3D-VQ
from TATS [13], and MAGVIT 3D-VQ, where the videos
are taken from the UCF-101 training set. We obtain the
TATS model from their official release 6. We train the
MaskGIT 2D-VQ and MAGVIT 3D-VQ using the same
protocol on the UCF-101 dataset.

We can see that the MaskGIT 2D-VQ produces a rea-
sonable image quality, but falls short of frame consistency
which causes significant flickering when played as a video
(e.g., the curtain color in the first row and the wall color in
the third row). TATS 3D-VQ has a better temporal consis-
tency but loses details for moving objects (e.g., the woman’s
belly in the second row). In contrast, our 3D VQ produces
consistent frames with greater details reconstructed for both
static and moving pixels.

Scalable tokenization. Since the tokenizers are trained in
an unsupervised manner, they exhibit remarkable general-
ization performances and can be scaled to big data as no
labels are required. To demonstrate this, we train a large
MAGVIT 3D-VQ on the large YouTube-8M [1] dataset
while ignoring the labels, and use the model to quantize
randomly sampled videos on YouTube.

Figs. 10 and 11 show the original and reconstructed
videos from YouTube at 240p (240 × 432) resolution with
arbitrary lengths (e.g. 4,096 frames). Although the tok-
enizer is only trained with 16-frame 128×128 videos, it pro-
duces high reconstruction fidelity for high spatial-temporal
resolutions that are unseen in training. Our 3D-VQ model
compresses the video by a factor of 4 temporally, by 8×8
spatially, and by 2.4 (24 bits → 10 bits) per element, yield-
ing a 614.4× compression rate. Despite such high compres-
sion, the reconstructed results show stunning details and are
almost indistinguishable from the real videos.

6https://songweige.github.io/projects/tats/

D.2. Single-Task Generation Examples

Fig. 12 compares the generated samples from
CCVS+StyleGAN [22], the prior state-of-the-art
TATS [13], and MAGVIT on the UCF-101 class-
conditional generation benchmark. As shown in Fig. 12,
CCVS+StyleGAN [22] gets a decent single-frame quality
attributing to the pretrained StyleGAN, but yields little or
no motion. TATS [13] generates some motion but with clear
artifacts. In contrast, our model produces higher-quality
frames with substantial motion.

Fig. 13 compares the generated samples between the
state-of-the-art RaMViD [19] and MAGVIT on the BAIR
frame prediction benchmark given 1-frame condition. As
shown, the clips produced by MAGVIT maintaining a bet-
ter visual consistency and spatial-temporal dynamics.

Fig. 14 compares the generated samples from
RaMViD [19] and MAGVIT on the Kinetics-600 frame
prediction benchmark given 5-frame condition. Note that
RaMViD generates video in 64×64 and MAGVIT in
128×128 where the standard evaluation is carried out on
64×64. As shown, given the conditioned frames, MAGVIT
generates plausible actions with greater details.

D.3. Multi-Task Generation Examples

Fig. 15 shows multi-task generation results on 10 dif-
ferent tasks from a single model trained on SSv2. Fig. 16
shows multi-task samples for three other models trained on
nuScenes, Objectron, and Web videos. These results sub-
stantiate the multi-task flexibility of MAGVIT.

The diverse video generation tasks that MAGVIT is ca-
pable of can enable many useful applications. For exam-
ple, Figs. 17 and 18 show a few untrawide outpainting sam-
ples by repeatedly performing the vertical outpainting task.
MAGVIT can easily generate nice large panorama videos
given a small condition.
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(a) MaskGIT [8] 2D-VQ

(b) TATS [13] 3D-VQ

(c) MAGVIT 3D-VQ-L (ours)

(d) Real

Figure 9. Comparison of tokenizers on UCF-101 training set reconstruction. Videos are reconstructed at 16 frames 64×64 resolution
25 fps and shown at 12.5 fps, with the ground truth in (d). MaskGIT 2D-VQ produces a reasonable image quality, but falls short of frame
consistency which causes significant flickering when played as a video (e.g., the curtain color in the first row and the wall color in the third
row). TATS 3D-VQ has a better temporal consistency but loses details for moving objects (e.g., the woman’s belly in the second row). In
contrast, our 3D VQ produces consistent frames with greater details reconstructed for both static and moving pixels.
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Figure 10. Our 3D-VQ model produces high reconstruction fidelity with scalable spatial-temporal resolution. For each group, the
top row contains real YouTube videos and the bottom row shows the reconstructed videos from the discrete tokens. The original videos are
in 240p (240 × 432) resolution with N frames. Our 3D-VQ model represents the video as N

4
×30× 54 discrete tokens with a codebook of

size 1024, representing a total compression rate of 614.4. Despite such high compression, the reconstructed results show stunning details
and are almost indistinguishable from the real videos.
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Figure 11. Our 3D-VQ model produces high reconstruction fidelity with scalable spatial-temporal resolution. For each group, the
top row contains real YouTube videos and the bottom row shows the reconstructed videos from the discrete tokens. The original videos are
in 240p (240 × 432) resolution with N frames. Our 3D-VQ model represents the video as N

4
×30× 54 discrete tokens with a codebook of

size 1024, representing a total compression rate of 614.4. Despite such high compression, the reconstructed results show stunning details
and are almost indistinguishable from the real videos.
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(a) CCVS+StyleGAN [22]

(b) TATS [13]

(c) MAGVIT-L-CG (ours)

Figure 12. Comparison of class-conditional generation samples on UCF-101. 16-frame videos are generated at 128×128 resolution
25 fps and shown at 12.5 fps. Samples for [13, 22] are obtained from their official release (https://songweige.github.io/
projects/tats/). CCVS+StyleGAN gets a decent single-frame quality attributing to the pretrained StyleGAN, but yields little or
no motion. TATS generates some motion but with clear artifacts. In contrast, our model produces higher-quality frames with substantial
motion.

22

https://songweige.github.io/projects/tats/
https://songweige.github.io/projects/tats/


(a) RaMViD [19]

(b) MAGVIT-L-FP (ours)

Figure 13. Comparison of frame prediction samples on BAIR unseen evaluation set. 16-frame videos are generated at 64×64 resolution
10 fps given the first frame as condition and shown at 5 fps where condition frames are marked in orange. Samples for [19] are obtained
from their official release (https://sites.google.com/view/video-diffusion-prediction). As shown, the clips
produced by MAGVIT maintaining a better visual consistency and spatial-temporal dynamics.
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(a) RaMViD [19] at 64×64 resolution, condition information is unavailable.

(b) MAGVIT-L-FP (ours) at 128×128 resolution, condition frames are marked in orange.

Figure 14. Comparison of frame prediction samples on Kinetics-600 unseen evaluation set. 16-frame videos are generated at 25 fps
given 5-frame condition. Samples for [19] are obtained from their official release (https://sites.google.com/view/video-
diffusion-prediction). As shown, given the conditioned frames, MAGVIT generates plausible actions with greater details.
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Prediction
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Figure 15. Multi-task generation results for the model only trained on the Something-Something-V2 dataset [14]. The condition used to
generate the shown videos are taken from the Something-Something-V2 evaluation videos.
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Figure 16. Multi-task generation results for three models trained on nuScenes [5], Objectron [3], and 12M Web videos, respectively. The
condition used to generate the shown videos are taken from the evaluation set.

26



Figure 17. Ultrawide outpainting results. Given a vertical slice of 64×128, MAGVIT expands it into a panorama video of 384×128 by
doing vertical outpainting for 5 times on each side.
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Figure 18. Ultrawide outpainting results. Given a vertical slice of 64×128, MAGVIT expands it into a panorama video of 384×128 by
doing vertical outpainting for 5 times on each side.
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