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A. Per-category Data Distribution

The category taxonomy is shown in Fig. I for
MVImgNet, and Fig. II for MVPNet. The per-category
data distribution is illustrated in Fig. III for MVImgNet, and
Fig. IV for MVPNet. The average size is 921 per class for
MVImgNet and 581 per class for MVPNet.

B. More Visualizations of Data Samples

MVImgNet. Fig. V presents a larger set of examples
in MVImgNet. Several multi-view images and the cor-
responding class label are illustrated for each sample. It
clearly shows the differences between each view, and com-
prehensive categories in our dataset.
MVPNet. Fig. VI shows various 3D point clouds from
MVPNet. It can be seen that each sample has a distinct
texture, noise, and pose, indicating real-world signals.

C. More Visualizations of Qualitative Results

Radiance field reconstruction. We visualize more results
of generalizable NeRF reconstruction in Fig. VII, where the
MVImgNet-pretrained model performs consistently much
better than the train-from-scratch model.
View-consistent SOD. Fig. VIII illustrates more results of
the view-consistent salient objection detection (SOD) task
on our MVImgNet test set, where finetuning U2Net [74] on
MVImgNet gains better result than the original U2Net.

D. More Experiments of Data Scalability

As indicated in the main paper, more power can be
gained with more data utilized from our datasets. In this
section, we provide more experimental results following
such rules.

Figure I. Category taxonomy of MVImgNet, where the angle
of each class denotes its actual data proportion. Interior: Parent
class. Exterior: Children class.

Figure II. Category distribution of MVPNet.

Multi-view stereo. Tab. I lists the MVS depth map accu-
racy on DTU [2] evaluation set. It shows that using larger
amounts of videos from MVImgNet for pretraining yields
higher accuracy.
View-consistent image classification. Similar conclu-
sions are also found in the view-consistent image classifica-
tion task. We progressively add more MVImgNet training
data into MVI-Mix data (mixing the original ImageNet [24]
data with MVImgNet data as stated in the main paper) to
train ResNet-50 [45] and evaluate on MVImgNet test set.
Tab. II demonstrates that adding more MVImgNet training
data brings better view consistency for the image recogni-
tion task.
Real-world point cloud classification. Besides, as shown
in Tab. III and Tab. IV, when employing larger ratios of
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Method 2mm ↑ 4mm ↑ 8mm ↑

pretrained with 10k videos 52.96 72.25 83.79
pretrained with 50k videos 56.86 73.79 83.42
pretrained with 100k videos 58.63 75.20 84.28

Table I. MVS depth map accuracy on DTU [2] evaluation set,
using different amounts (10k, 50k, 100k) of videos (one video
may contain several multi-view images / frames) from MVImgNet
for pretraining.

Scale Confidence Var Accuracy

ImageNet-only 0.207 53.09%
MVI-Mix with 20k videos 0.119 75.03%
MVI-Mix with 40k videos 0.114 76.88%
MVI-Mix with 80k videos 0.104 77.03%

MVI-Mix with 100k videos 0.102 77.31%
MVI-Mix with 120k videos 0.101 77.47%

Table II. View-consistency image classification results on
MVImgNet test set, using different amounts (20k, 40k, 80k,
100k, 120k) of videos (one video may contain several multi-view
images / frames) from MVImgNet for training ResNet-50 [45]
(smaller Confidence Var and higher Accuracy indicate better view
consistency).

data from MVPNet for pretraining both supervised (i.e.,
PointNet++ [73], CurveNet [98]) and self-supervised mod-
els (i.e., PointMAE [68]), the better performance can be
achieved when fine-tuning them on ScanObjectNN dataset
[89] for real-world point cloud classification task.

E. More Discussions about Our Datasets

Data filter. Our ∼219k videos are screened from ∼260k
raw videos, where the videos with bad camera estimations
are filtered. When building MVPNet, we select 90k (the
most common 150 categories are chosen) videos, yielding
87k point clouds to remain after the manual cleaning.

Real-world captures. Note that when we capture the
object videos, we maintain the original status of objects in
real-world environments, i.e., objects will not be intention-
ally displayed standalone for ideal 360◦ captures (e.g., the
sofa is against the wall). By doing so: 1) The capture is easy
to conduct, making it possible to build a very large-scale
dataset. 2) The produced data better matches the real-world
applications, e.g., our obtained point clouds are usually of
partial views which are more like real-captured. 3) The pro-
duced images usually contain the diverse scene-level back-
ground, instead of the 360◦ capture of single objects on a
clean supporter. This better provides the potential for in-
the-wild scene-level visual tasks.

Add Random Rotation
Method from scratch 25% 50% 100%

PointNet++ [73] 76.50 / 73.42 77.82 / 75.98 78.11 / 76.13 78.76/76.54
CurveNet [98] 73.96 / 69.96 73.75 / 69.86 75.83 / 72.48 78.99 / 76.59

PointMAE [68] 83.17 / 80.75 83.83 / 81.94 85.22 / 83.34 86.19 / 84.60

Table III. ScanObjectNN [89] real-world point cloud classifica-
tion results of using different ratio (25%, 50%, 100%) of data
from MVPNet for pretraining under the setting of Add Random
Rotation. The metric is overall / average accuracy.

PB T50 RS
Method from scratch 25% 50% 100%

PointNet++ [73] 78.80 / 75.70 79.67 / 76.63 81.36 / 79.33 80.22 / 76.91
CurveNet [98] 74.27 / 69.43 77.26 / 72.65 81.32 / 78.03 83.68 / 81.17

PointMAE [68] 77.34 / 73.52 82.75 / 79.90 84.18 / 81.41 84.13 / 81.92

Table IV. ScanObjectNN [89] real-world point cloud classifica-
tion results of using different ratio (25%, 50%, 100%) of data
from MVPNet for pretraining under the setting of PB T50 RS.
The metric is overall / average accuracy.)

F. Implementation Details
F.1. 3D Reconstruction

Radiance field reconstruction. We choose IBR-
Net [94] as the baseline method, and use the original train-
ing datasets of IBRNet [94], which include Google Scanned
Objects [27], RealEstate10K [116], the Spaces dataset [29],
and 102 real scenes from handheld cellphone captures. We
pretrain IBRNet on the full MVImgNet dataset and finetune
on the aforementioned IBRNet training datasets for 10k it-
erations. For each object, 8∼12 views are used for train-
ing and 10 views for inference. #views is independent on
#objects. The raw input resolution of each sample is used
for computing, and it varies. The finetuning takes 10k it-
erations, and the scratch model is exactly the same as the
author-released IBRNet model for a fair comparison. The
pretraining takes about 3 days on 8 RTX3090 GPUs.
Multi-view stereo. Multi-view stereo (MVS) aims at re-
covering 3D scenes from multi-view images and calibrated
cameras. As for the data preprocessing, 200K frames are
randomly sampled from 100K videos in MVImgNet, and
are resized to 640 × 360 or 360 × 640. We choose JDACS
[103] to perform self-supervised pretraining on MVImgNet.
JDACS takes multi-view images and corresponding poses
as input, and uses MVSNet as the backbone to output the
synthetic/pseudo depth, where the self-supervision signal is
provided by multi-view consistency.

F.2. View-consistent Image Understanding

View-consistent image classification.
As mentioned in the main paper, we mix MVImgNet

and original ImageNet [24] for creating a new training set.
The hybrid datasets contain 1,100 categories (after remov-
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ing the overlapping classes), coming from 500k frames of
100k MVImgNet videos and 200k ImageNet images.
View-consistent contrastive learning. We follow the
original MoCo v2 to conduct experiments. For reducing
view redundancy, we randomly sample 5 frames of each
video from MVImgNet for finetuning. For each iteration,
we randomly sample two view images from the same video
as positive pair and apply random data augmentation to in-
crease the generalization capability of the model, images
from other videos will be treated as negative pairs
View-consistent SOD. We propose to leverage the multi-
view consistency to improve SOD with the help of optical
flows. The two adjacent frames should be the same after
warping the optical flow to one of the other frames, yielding
the loss of the optical flow as:

LossOF = M(fi)−M(fi−1) · F(fi), (1)

where i denotes the frame index, M means the mask, and
F is the optical flow between fi and fi−1 calculated before
training. By adding Lossof into the original SOD loss, the
final loss is:

Loss = τ ∗ LossOF + (1− τ) ∗ LossSOD, (2)

where τ is set to 0.15 in our experiments.
For fast training, we sample 10 frames uniformly from

each video of 100k MVImgNet and 10, 553 training images
from DUTS-TR [93].

F.3. 3D Understanding

All the experiments in 3D understanding strictly follow
the original settings of the selected backbone networks.

16



Figure III. Data amount of each category of MVImgNet.
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Figure IV. Data amount of each category in MVPNet.
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Figure V. A variety of multi-view images in MVImgNet.
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Figure VI. A variety of 3D object point clouds in MVPNet.
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Figure VII. More qualitative comparison on real-world 360◦ objects [75] of MVImgNet-pretrained IBRNet [94] model and the train-
from-scratch model.
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Frame U2Net Ori. MVImgNet FT. Frame U2Net Ori. MVImgNet FT. Frame U2Net Ori. MVImgNet FT.

Figure VIII. More qualitative results of view-consistent salient object detection. Finetuning U2Net [74] on MVImgNet improves the
performance.
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