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A. Appendix
A.1. Proofs

Theorem A.1. Denote the risk of W = Winv and W =
Waug as Rinv and Raug respectively. We have Rinv ≥
Raug when paug ∈ [ 0.5−q

1−q , 1] and Rinv < Raug when
paug ∈ [0, 0.5−q

1−q ).

Proof. Our proof starts by calculating the risks of the in-
variant predictor and a perturbed predictor that leverages
the information introduced in the augmentation. Follow-
ing prior works [1], the risk Rinv of the invariant predictor
W = Winv can be expressed as:

Rinv = E[Y e
Aug ⊕ I(W ·Ge)]

= E[Y e
Aug ⊕ I(Winv ·Ge

inv)]
(1)

The prediction relationship between Ge
inv and Y is sta-

ble across different environments. More importantly, Ge
inv

is the causal subgraph that intrinsically affects the label
Y (Ge) of the training graph Ge. Without the loss of gen-
erality, we consider a two-class classification problem with
balanced labels, i.e. Y (Ge) ∈ {0, 1} and p(Y (Ge) = 1) =
p(Y (Ge) = 0) = 0.5. When Y (Ge) = 1, Rinv takes the
following form:

Rinv = (1− paug) · p+ paug · (1− p)

= p+ paug − 2ppaug.
(2)

When Y (Ge) = 1, Rinv is as follows:

Rinv = (1− paug) · p+ paug · (1− p)

= p+ paug − 2ppaug.
(3)

Notice that p(Y (Ge) = 1) = p(Y (Ge) = 0) = 0.5. Thus,
we finally obtain Rinv = p+paug−2ppaug . We proceed to
compute the risk Raug of a perturbed predictor W = Waug .
Similarly, when Y (Ge) = 1, we have:

Raug = (1− p) · (1− paug) + ppaug

= 1− p− paug.
(4)

Moreover, when Y (Ge) = 0, the corresponding risk is:

Raug = p · (1− paug) + (1− p)paug

= p+ paug − 2ppaug
(5)

Hence, the risk of W = Waug is Raug = 0.5− ppaug . We
can easily obtain Rinv ≥ Raug when paug ∈ [ 0.5−q

1−q , 1] and
Rinv < Raug when paug ∈ [0, 0.5−q

1−q ). QED

With the augmented environments, the invariant predic-
tor is supposed to achieve a lower risk than the perturbed
predictor and makes it easier for the GNN predictor to lever-
age an invariant predictive relationship. However, when the

label shift occurs in augmentation i.e. paug ∈ [ 0.5−q
1−q , 1],

the GNN predictor can easily learn the perturbed predictive
relationship to achieve lower risk and is hard to general-
ize to OOD graphs. This perturbed predictive relationship
can be introduced during augmentation, as discussed in the
above proof, or possibly embedded in the underlying data
generation process. Therefore, it is essential to maintain the
label-invariant augmentation for graph OOD generalization.
Notice that in the above proof we consider the linear case
while most GNNs are nonlinear. However, our empirical
evidence in Section 5 of the submission shows that the la-
bel shift in augmentation could lead to unsatisfactory OOD
performance.

A.2. Comparison between LiSA and Related
Works.

When sufficient training environments are lacking, it is
natural to consider generating new environments via data
augmentation. Therefore, some works handle different
OOD generalization problems via augmentation for gener-
alization schemes. Specifically, they generate augmented
environments with different graph edition policies and learn
an invariant GNN on these environments.

EERM [10] is an OOD generalization method designed
for the node classification task, which predicts the label of
OOD nodes after training with in-distribution data. In node
classification, the nodes are usually in the same graph or
several large graphs. EERM employs the graph extrapola-
tion method, which adds new edges to the whole training
graph to generate augmented environments. To cover as
much population as possible, EERM generates augmenta-
tions to maximize the loss variance of the GNN classifier
with reinforcement learning. Although this variance reg-
ularization somehow improves diversity among augmenta-
tions, we find it insufficient to promote diversity in prac-
tice. As shown in Table 4 in the main submission, the aug-
mented environments generated by EERM are close to each
other, while the proposed LiSA can induce more diverse
augmentations. Another concern is that variance regulariza-
tion may also encourage generating augmented graphs with
perturbed labels to enlarge the classification loss. More-
over, EERM is hard to deal with the OOD problem on the
graph classification task, where the dataset contains many
graphs, and the goal is to infer the graph label. Crucially,
the graph extrapolation scheme may perturb the semantic
information of graphs or even lead to invalid graphs. For
example, the molecule graphs become chemically invalid
after adding new edges. Differently, LiSA does not harm the
graph validity by mining diverse label-invariant subgraphs,
and thus handles the OOD graph classification problem.

DIR [11] is an OOD generalization method designed for
graph-level tasks. DIR employs a graph generator to gen-
erate an invariant subgraph of the input, hoping the predic-
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Table 1. Statistics of all the datasets.

Dataset Task Distribution Shift Nodes Edges Classes Metric

MUTAG [7] Graph Size 97.9k 202.5k 2 Accuracy
D&D [5] Graph Size 334.9k 1.7M 2 Accuracy

Spurious-Motif [12] Graph Spurious Correlation 760.3k-765.9k 1.1M 3 Accuracy
MNIST-75sp [5] Graph Noise Features 2.3M 18.9M 10 Accuracy

Twitch-Explicit [8] Node Cross Domain 1.9k-9.6k 31.3k-153.1k 2 ROC-AUC
Facebook-100 [9] Node Cross Domain 0.7k-41.5k 16.7k-1.6M 2 Accuracy

Elliptic [6] Node Temporal shift 203.8k 234.3k 2 F1 Score
OGB-Arxiv [4] Node Temporal shift 169.3k 1.2M 40 Accuracy

tion between invariant subgraphs and graph labels is stable
across different environments. And the GNN classifier only
takes the invariant subgraph as input. To encourage the sub-
graph to be invariant, DIR employs the graph intervention
strategy. It first decomposes the training graphs into invari-
ant and complementary subgraph pairs. Then, it permutes
the invariant and complementary subgraph pairs to generate
augmented graphs for training. The label of the augmented
graph is supposed to be consistent with the invariant sub-
graph. However, exchanging the complementary subgraphs
may also change the label [3] as the graph label is sensitive
to the graph structure. Differently, LiSA directly discovers
label-invariant subgraphs to construct the augmented envi-
ronments and thus avoid the label shift problem. Moreover,
DIR is hard to implement on the node classification task,
while LiSA can adapt to both node and graph classification
tasks.

SizeShiftReg [2] is a recently proposed augmentation-
based graph OOD generalization method. It studies the
size shift between training and testing graphs in the graph
classification. During training, it randomly drops a por-
tion of graph structures to generate the augmented graphs,
which is a coarsen version of the original graph. However,
SizeShiftReg is also likely to change the graph label by ran-
domly dropping graph structures and is incapable of han-
dling other shifts other than the size shift. Since the code is
still unavailable, we cannot compare the empirical perfor-
mance between LiSA and SizeShiftReg.

A.3. Experimental Details

A.3.1 Details on Datasets

We provide more detailed statistics of the datasets in Ta-
ble 1.

A.3.2 Visualization

We visualize the discovered predictable subgraphs on the
MUTAG dataset, which is shown in Figure 1. All the found
subgraphs are different, but all contribute to the mutagenic
effect of molecules. This indicates that LiSA can generate
diverse augmented environments with consistent semantics
with the source environment.

Algorithm 1 Optimization algorithm for LiSA.

Input: Training set {(Gi, Yi)|i = 1, · · · , N}, sub-
graph generators {gj(·;ϕj)}Kj=1, graph neural network
f(·; θ), inner-step I , outer-step T , hyperparameters
α, β, η1, η2.

Output: A generalizable GNN f∗
θ

1: function LISA
2: θ ← θ0; ϕi ← ϕ0

j , j = 1, · · · ,K
3: for i = 0→ N do
4: θ ← θ0

5: for t = 0→ T do
6: for j = 0→ K do
7: ϕt+1

j ← ϕt
j − η1∇ϕt

j
Lcls + αLinfo −

βLe

8: end for
9: end for

10: θi+1 ← θi − η2∇θiLcls + V are(Lcls)
11: end for
12: return f∗

θ

13: end function

A.3.3 Algorithm

We provide the pseudo code for bilevel optimization of
LiSA objective in Eqn.10 in Algorithm 1. For simplicity,
we denote the weight of subgraph generator gi as ϕi and the
weight of GNN f as θ. Notice that we maximize Le(gi) in
the inner loop to improve diversity.

min
f
Lcls(f, {g∗i }ni=1) + Vare(Lcls(f, g

∗
i )), i = 1 ∼ n

s.t.g∗i = argmin
gi
Lcls(f, gi) + αLinfo(gi)− βLe(gi).

(6)

A.3.4 Sensitivity Study of Hyper-parameters

We study the sensitivity of hyper-parameters α, β and K,
which are the weights of Lkld, Ldist and the number of
subgraph generators K. We report the average ROC-AUC
on all testing environments of the Twitch-Explicit dataset
in Figure 2. The performance of LiSA is stable on a wide
range of hyper-parameters. Moreover, we observe a per-
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Figure 1. Visualization of the predictable subgraphs on MUTAG dataset. All the subgraph generators found different subgraphs which all
contribute to the mutagenic effect. (Best view in color)

formance gain when we increase the number of subgraph
generators since it can provide more diverse augmented en-
vironments. To extensively study the effect of K, we set
α = 0.1, β = 0.1, and vary K from 1 to 7. The results
are shown in Table 2. Moreover, we compute the average
distance between the augmented environments and source
environment, denoted as d, to study the diversity of aug-
mentations. The performance of LiSA increases as K in-
creases from 1 to 5. After that, the performance drops since
the diversity (d) of augmented environments decreases. The
reason is that different generators may produce similar sub-
graphs at a large K, leading to the degraded performance of
LiSA.
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Figure 2. Sensitivity study of hyper-parameters on Twitch-Explicit dataset. We report average ROC-AUC on testing environments.

Table 2. Sensitivity study of the number of subgraph generators.
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