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A. Network Architecture
A.1. Blend MLP
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Figure 1. Visualization of Blend MLP. We use 3 layers MLP to
calculate the belnd weights of correspondence features. It takes the
concatenation of two correspondence features fi and fj as input,
and output the final blend weight W of these two features.

A.2. Rendering Network
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Figure 2. Visualization of Rendering Network. We use total 16
layers MLP to calculate the final color rgb and density σ. The
first 8 layers of MLP take γ(x) which means the positional encod-
ing of point x as input, and output a 36 dimensional vector. One
dimension of first 8 layers MLP output density value σ, and the
remaining dimension is concatenated with the blended feature F .
The second 8 layers MLP take the concatenation as input, and out-
put the final rgb color value.

B. Ablation Study
B.1. Ablation Study on Shared Bidirectional Defor-

mation Module

Fig. 3 illustrates that the Shared Bidirectional Deforma-
tion Module with consistent loss we proposed help produce
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Figure 3. Ablation of LCONSIS. We compare the qualitative result
without consistent loss.

more accurate deformation in regions like arms. Without
this loss, the deformation in arms area tends to be bending
and produce obvious artifacts.
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Figure 4. Visualization of LCONSIS. We optimize the LCONSIS

separately and visualize its effectiveness.

In Fig. 4 we use SMPL vertex as input of Shared Bidi-
rectional Deformation Module and optimize it with learning
rate of 5× 10−6 separately. Points calculated by consistent
loss which value >= 0.05 is colored red. The second col-
umn is the projection of the input image’s SMPL vertex.
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Figure 5. Qualitative result of novel pose setting in ZJU-MoCap. We compare the novel pose synthesis quality with baseline methods
in ZJU-Mocap. Result shows that our method synthesise more realistic images in novel pose.

Canonical Vertex is the points deformed from SMPL vertex
using backward deform of Shared Bidirectional Deforma-
tion Module. Forward Deformed Vertex means the points
forward deformed from canonical vertex. The red points il-
lustrate that the consistent loss we proposed can detect the
points that are deform incorrectly. We further visualize the
results of iteration1, 50 and 100. It shows that the red points
reduce gradually, which means that the consistent loss cor-
rect and regularize the shared deformation weight.

B.2. Ablation Study on Forward Correspondence
Search Module

Fig. 6 shows that the correspondence features produced
by the Forward Correspondence Search module we pro-
posed help produce more accurate color and texture in cloth
regions. Without these features, the synthesis result tends to
produce an unnatural texture in the cloth.

B.3. Ablation Study on Sequence Length

In order to explore our method’s performance in different
training sequence lengths, we evaluate the novel view syn-
thesis results in different sample rates. The result is shown



PSNR SSIM LPIPS
frame nums w/o LCONSIS w/o feat full w/o LCONSIS w/o feat full w/o LCONSIS w/o feat full
380 27.87 27.84 27.89 0.9387 0.9389 0.9389 55.85 54.91 55.28
76 27.44 27.71 27.77 0.9348 0.9368 0.9390 63.16 60.94 56.40
38 27.65 27.71 27.88 0.9366 0.9358 0.9390 61.94 62.32 56.40
19 27.27 27.35 27.52 0.9341 0.9359 0.9361 67.56 62.82 62.56

Table 1. Ablation study on Sequence Length. We compare the novel view synthesis results in different training frame length. LPIPS* =
LPIPS ×103.
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Figure 6. Qualitative ablation of correspondence features. We
compare the qualitative result without correspondence features.

Subject 377 Subject 386 Subject 387
PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓

Neural Body [3] 29.29 0.9693 39.40 30.71 0.9661 45.89 26.36 0.9520 62.21
HumanNeRF [5] 29.91 0.9755 23.87 32.62 0.9672 39.36 28.01 0.9634 35.27

Ours 30.77 0.9787 21.67 32.97 0.9733 32.73 27.93 0.9633 33.45
Subject 392 Subject 393 Subject 394

PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓
Neural Body [3] 28.97 0.9615 57.03 27.82 0.9577 59.24 28.09 0.9557 59.66
HumanNeRF [5] 30.95 0.9687 34.23 28.43 0.9609 36.26 28.52 0.9573 39.75

Ours 31.24 0.9715 31.04 28.46 0.9622 34.24 28.94 0.9612 35.90

Table 2. Novel view synthesis quantitative comparison on ZJU-
MoCap dataset. We show the results of each subject in the table.
LPIPS* = LPIPS ×103.

Subject 377 Subject 386 Subject 387
PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓

Neural Body [3] 29.08 0.9679 41.17 29.76 0.9647 46.96 26.84 0.9535 60.82
HumanNeRF [5] 29.79 0.9714 28.49 32.10 0.9642 41.84 28.11 0.9625 37.46

Ours 30.46 0.9781 20.91 32.99 0.9756 30..97 28.40 0.9639 35.06
Subject 392 Subject 393 Subject 394

PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓ PSNR ↑ SSIM ↑ LPIPS* ↓
Neural Body [3] 29.49 0.9640 51.06 28.50 0.9591 57.072 28.65 0.9572 55.78
HumanNeRF [5] 30.20 0.9633 40.06 28.16 0.9577 40.85 29.28 0.9557 41.97

Ours 30.98 0.9711 30.80 28.54 0.9620 34.97 30.21 0.9642 32.80

Table 3. Novel pose synthesis quantitative comparison on ZJU-
MoCap dataset. We show the results of each subject in the table.
LPIPS* = LPIPS ×103.

in Table 1. We use subject 394 in ZJU-MoCap as testing
and sample in rates of 1, 5, 10, and 20, and the number
of frames is 380, 76, 38, 19 respectively. We follow Hu-
manNeRF [5] to evaluate in 22 cameras not seen in training
in 30 sample rates. And follow NeuralBody [3] to evalu-
ate the subject in a 3d bounding box to avoid getting an
inflated PSNR value. The result shows that the relationship
between sequence length and generated quality is not linear.
And When in small training frame numbers like 19 frames,
the module we proposed helps to retain the more realistic
result.

C. Evaluation details
In order to evaluate novel view and novel pose synthesis,

we split the frames in camera 1 in a 4:1 ratio as Set A and B.
We only use Set A for training. For novel view evaluation,
we sample the synchronous video frames of Set A for all
unseen 22 cameras at the rate of 30. For novel pose evalua-
tion, we sample at the same rate for the synchronous frames
of Set B for all cameras. In general, the evaluation frames
for the novel view would be 242 frames, and 184 frames for
the novel pose setting.

D. Condition on view direction
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Figure 7. Comparison of adding view direction. We compare
the results of conditioning blend weights on view direction and no
condition.

We have tried to condition our feature blend weights on
view direction when designing our model, but we found
overfitting problems that were also found by works like
StyleSDF [2] and StyleNeRF [1]. As shown in Fig. 7, con-
ditioning weights on view direction can help to overfit in
the training frames and synthesize realistic results even in
some highly reflective areas, but generate lots of artifacts
when synthesizing novel view images. We find condition-
ing blend weights on view direction weakens the general-
ization ability to the novel view.

E. More results
To compare the generated results, we visualize the novel

pose synthesis results in ZJU-MoCap dataset of Neural-
Body, HumanNeRF and our method in Fig. 5. NeuralBody
tends to generate vague images with large noise in novel
poses. HumanNeRF tends to produce some black line ar-
tifacts in some detailed areas. We also show the extract
comparison with HumanNeRF under the challenge poses



Figure 8. Qualitative results on challenge poses generated by MDM [4] through text input. We evaluate our method driven by
challenge pose sequence generated by MDM model.

generated by MDM [4] model in Fig. 8. The result shows
that our methods can retain these detail due to the correct
deform and help with guided features.

We show the detailed quantitative results of each sub-
ject we compare in ZJU-MoCap dataset in Table. 3 and
Table. 2. Though the PSNR metric of NeuralBody seems
good in value, they synthesize poor visual quality images in
both novel view and novel pose (as PSNR prefers smooth
results). Our improvement in PSNR over HumanNeRF is
not significant, and slightly lower in subject 387 when test-
ing in the novel pose. But in LIPIS, our method has larger
improvement in novel view and novel pose setting respec-
tively. We can see that our MonoHuman framework outper-
forms existing methods in most metrics in both settings.
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