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Due to the lack of space in the main paper, we provide
more details of the proposed OSRT in the supplementary
file. In Sec. 1, we show the transformation relationships
from the uniformed sphere to various projection types (ERP,
Fisheye, and Perspective) and the derivation processes of
each projection type. More experimental details and inter-
pretations can be found in Sec. 2. Then we provide addi-
tional visual comparisons and visualizations under various
projection types in Sec. 3.

1. Geometric Relationship

In this section, xE , yE and xP , yP refer to plane coor-

dinates of ERP and Perspective, respectively. For an ideal

sphere, θS , ϕS are the spherical coordinates, and xS , yS , zS
are the space coordinates. ρF , θF and xF , yF are polar co-

ordinates and plane coordinates of Fisheye, respectively.

1.1. Transformation

ERP. For ERP, the coordinate is defined as:{
xE = θS

yE = ϕS .
(1)

Fisheye. For Fisheye, the coordinate is defined as:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
ρF = 2× arctan(

√
x2
S + y2S/z

2
S)/AF

θF = arctan(yS/xS)

xS = ρF × cos(θF )

yS = ρF × sin(θF ),

(2)

where AF is the aperture degree of Fisheye. Specifically,

when the normal vector of the Fisheye splicing plane is par-

allel to the z-axis, Eq. (2) can be simplified as:{
ρF = 2× (π/2− ϕS)/AF

θF = θS .
(3)

Here, we define a rotation transformation under the spheri-

cal coordinates:

[x∗
S , y

∗
S , z

∗
S ]

T = Mr · [xS , yS , zS ]
T , (4)

where Mr is the 3D rotation matrix. [xS , yS , zS ]
T and

[x∗
S , y

∗
S , z

∗
S ]

T are the original and rotated spherical coordi-

nates, respectively. Eq. (4) is defined to align general Fish-

eye to the horizontally spliced one, which is identical to add

Δθr,Δϕr on spherical polar coordinates.

(a) ERP (b) Fisheye (c) Perspective
Figure 1. Geometric illustration of three projection types. Blue and yellow refer to the spherical surface and projection plane, respectively.
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Perspective. The coordinates is defined as:{
xP = tan(θS)

yP = tan(ϕS)/cos(θS),
(5)

where xP , yP ∈ [− tan(AP /2), tan(AP /2)]. AP is the

aperture degree of Perspective, which determines the field-

of-view (FOV) of the given Perspective. Note that a per-

spective image only represents information on a partial area

of a spherical surface.

1.2. Distortion

As mentioned in the main paper, the distortion degree of

each projection type is measured by [5]:

K(x, y) =
δS(θ, ϕ)

δP (x, y)
=

cos(ϕ)|dθdϕ|
|dxdy| =

cos(ϕ)

|J(θ, ϕ)| , (6)

where δS(·, ·) and δP (·, ·) represent the area on the spher-

ical surface and the projection plane, respectively. |didj|
represents a plane microunit. |J(θ, ϕ)| is the Jacobian deter-

minant from spherical coordinate to projection coordinate.

ERP distortion. From Eqs. (1) and (6), ERP stretching

ratio can be derived as:

KERP(xE , yE) = cos(ϕS) = cos(yE). (7)

Fisheye distortion. In this paragraph, we denote AF as

π. |J∗
F (θS , ϕS)| can be simplified by Eq. (3):

|J∗
F (θS , ϕS)|

=

∣∣∣∣∣
∂(xF )
∂(θS)

∂(xF )
∂(ϕS)

∂(yF )
∂(θS)

∂(yF )
∂(ϕS)

∣∣∣∣∣
=

∣∣∣∣∣
∂(ρF cos θF )

∂(θS)
∂(ρF cos θF )

∂(ϕS)
∂(ρF sin θF )

∂(θS)
∂(ρF sin θF )

∂(ϕS)

∣∣∣∣∣
=

∣∣∣∣∣
∂((1−2ϕS/π) cos θS)

∂(θS)
∂((1−2ϕS/π) cos θS)

∂(ϕS)
∂((1−2ϕS/π) sin θS)

∂(θS)
∂((1−2ϕS/π) sin θS)

∂(ϕS)

∣∣∣∣∣
=

∣∣∣∣ −(1− 2ϕS/π) sin θS −2 cos θS/π
(1− 2ϕS/π) cos θS −2 sin θS/π

∣∣∣∣
=

2

π
(1− 2ϕS/π)(sin

2 θS + cos2 θS)

=
2

π
ρF .

(8)

From Eqs. (3), (6) and (8), the stretching ratio of hori-

zontally spliced Fisheye can be derived as:

K∗
Fisheye(xF , yF ) =

cos(ϕS)

|JF (θS , ϕS)|
=

cos(π2 (1− ρF ))
2
πρF

.

(9)

Then, we can derive stretching ratio of general Fisheye

from Eqs. (6), (8) and (9):

KFisheye(xF , yF ) =
δS(θS , ϕS)

δP (xF , yF )

=
δS(θ∗S , ϕ

∗
S)

δP (xF , yF )︸ ︷︷ ︸
Projection

· δS(θS , ϕS)

δS(θ∗S , ϕ
∗
S)︸ ︷︷ ︸

Rotation

= K∗ · cos(ϕS)|dθSdϕS |
cos(ϕ∗

S)|dθ∗Sdϕ∗
S |

= K∗ · cos(ϕ
∗
S +Δϕr)

cos(ϕ∗
S)

=
cos(π2 (1− ρF )−Δϕr)

2
πρF

,

(10)

where Δϕr is a constant, which is determined by the angle

between the normal vector of splicing plane and z-axis.

Perspective. From Eqs. (5) and (6), the Perspective

stretching ratio can be derived as:

KPerspective(xP , yP ) =
cos(ϕS)

|JP (θS , ϕS)|
= cos3(θS)cos

3(ϕS)

= (1 + x2
P + y2P )

− 3
2 .

(11)

2. Details and Discussions
2.1. Data Cleaning on ODI Dataset

Except for ERP downsampling, we still find other issues

in both ODI-SR and SUN360 datasets. Previous datasets

are downsampled by bicubic function without anti-alias de-

sign (OpenCV-Python), which introduces mottled artifacts

(Fig. 2). Meanwhile, they are stored in the format of JPEG,

which leads to missing details and JPEG-blocking artifacts.

Storing HR images in JPEG format is harmful for both

training and evaluation. To tackle these issues, we pro-

pose to apply downsampling by anti-aliased bicubic func-

tion (Pillow) and store images in a lossless format (PNG).

Moreover, there are problematic ODIs in previous datasets:

1) transforming mistakes; 2) virtual scenarios; 3) extremely

low qualities; 4) plane images. Consequently, we propose

ODI-SR-clean and SUN360-clean datasets, the differences

are shown in Tab. 1. We train and test all models on cleaned

Original Cleaned

Num of images in ODI-SR (training) 1200 1150
Num of images in ODI-SR (testing) 100 100
Num of images in ODI-SR (validation) 100 97
Num of images in SUN360 100 100
Downsampling function OpenCV Pillow
Downsampling target ERP Dual Fisheye
Storage format JPEG PNG

Table 1. Differences between the original and cleaned datasets.



Backbone
Datasets

Training
Scale

ODI-SR SUN360
network scheme PSNR SSIM PSNR SSIM

SwinIR ODI-SR N/A

×2

30.52 0.8819 31.21 0.8852
SwinIR DF2K/ODI-SR one-stage 30.59 0.8810 31.26 0.8841
SwinIR DF2K-ERP/ODI-SR one-stage 30.64 0.8821 31.33 0.8855
SwinIR DF2K-ERP/ODI-SR two-stage 30.54 0.8797 31.17 0.8818
OSRT DF2K-ERP/ODI-SR one-stage 30.77 0.8846 31.52 0.8888

SwinIR ODI-SR N/A

×4

27.12 0.7663 27.39 0.7707
SwinIR DF2K/ODI-SR one-stage 27.24 0.7708 27.59 0.7768
SwinIR DF2K-ERP/ODI-SR one-stage 27.31 0.7735 27.71 0.7804
SwinIR DF2K-ERP/ODI-SR two-stage 27.33 0.7725 27.74 0.7795
OSRT DF2K-ERP/ODI-SR one-stage 27.41 0.7762 27.84 0.7835

Table 2. Ablation study on data augmentation.

Method Scale
ODI-SR SUN 360 Panorama

PSNR SSIM PSNR SSIM

RCAN [8] ×2
30.08 0.8723 30.56 0.8712

RCAN-local [1] 30.28 0.8735 30.80 0.8740

RCAN [8] ×4
26.85 0.7621 27.10 0.7660

RCAN-local [1] 26.99 0.7622 27.24 0.7665

Table 3. Influence of test-time local converter.

OSRT trained on ODI-SR OSRT trained on ODI-SR-clean

OSRT trained on ODI-SR OSRT trained on ODI-SR-clean

Figure 2. Visual comparisons of ×8 SR results trained and tested

on the original and cleaned datasets.

datasets except the comparison under ERP downsampling

(Sec. 4.3 in the main paper).

When comparing SR results under ERP downsampling,

we train and test models on original datasets, which is iden-

tical to previous methods. Thus we can directly compare

the SR results of OSRT with SR results reported by previ-

ous methods, e.g., LAU-Net [2] and SphereSR [7].

2.2. Instability of RCAN

For RCAN [8] trained with Fisheye downsampling, the

training process is unstable and thus the performance is de-

graded. We find that the instability of RCAN is caused by

incompatibility between the channel attention block (CAB)

and Fisheye downsampling. CAB requires global statisti-

cal features, and its training stability depends on the con-

sistent mean value distribution of each patch [1]. However,

when Fisheye downsampling is applied to an ERP image,

the ERP image suffers from nonuniform downsampling,

which directly increases the mean value diversity between

patches. Although implementing a test-time local converter

(TLC [1]) can reduce the distribution gap between the patch

and the whole image (Tab. 3), it cannot reduce the distri-

bution gap within patches. Consequently, while training

ODISR models under Fisheye downsampling, blocks that

require global statistical values are not recommended.

2.3. Full Ablation Results of Data Augmentation

Due to the lack of space in the main paper, we only show

partial ablation results of data augmentation strategies (Tab.

4). The full results are shown in Tab. 2. Compared with

fine-tuning on DF2K-ERP pre-trained models (two-stage),

training on two datasets jointly (one-stage) shows better re-

sults. Moreover, the advantage of OSRT is enlarged when

additional training patches are applied.

2.4. Domain Gap between Real and Pseudo ODIs

As mentioned in the main paper (Sec. 3.4), we syn-

thesize pseudo ERP training data (DF2K-ERP) from the

plain images to alleviate the over-fitting problem of large

networks. Although DF2K-ERP has shown obvious ben-

efits, there is still a domain gap between real and pseudo

images. From Eq. (11), we can see that the distortion de-

gree of Perspective is determined by the distance from the

center. As the projection range is determined by FOV de-

gree, perspective images with different FOV degrees suffer

inconsistent distortions. However, we cannot obtain the dis-

tribution of FOV degrees in real-world scenarios. Thus we

directly assume that all pseudo perspective images have a

fixed FOV degree of 90◦, which introduces a domain gap.

While the inevitably domain gap is a limitation of DF2K-

ERP, it still overcomes the over-fitting issue and improves

the reconstruction ability.

3. Visualization
As mentioned in the main paper (Sec. 3.2), ERP down-

sampling leads to unrealistic ODIs. Thus we only show vi-

sualizations based on Fisheye downsampling in this section.

Additional qualitative comparison. We provide ad-

ditional visual comparisons with other methods on the

ODI-SR-clean testing dataset and SUN360-clean dataset in



Fig. 3. Reconstructed ERP images are compared under

ERP, Fisheye, and Perspective. As shown in Fig. 3 (d) and

(f), we can see that OSRT can reconstruct sharp and accu-

rate boundaries. Besides, from Fig. 3 (a) and (c), we con-

clude that OSRT is skilled at reconstructing rigid textures.

Additional visualization of OSRT. To show the over-

all quality of OSRT reconstructed images, we project these

ERP images to arbitrary projection types. Figs. 4 to 6 de-

pict visualizations of ×2, ×4 and ×8 SR results, respec-

tively. Under all projection types, OSRT can reconstruct

details with high fidelity (buildings in Fig. 4, tiles in Fig. 5,

and grasses in Fig. 6).

(a) ERP SUN360 (×2): 004

HR Bicubic RCAN [8] SRResNet [6]

EDSR [4] SwinIR [3] SwinIR† [3] OSRT†

(b) ERP ODI-SR (×4): 049

HR Bicubic RCAN [8] SRResNet [6]

EDSR [4] SwinIR [3] SwinIR† [3] OSRT†

(c) ODI-SR (×4): 008
Fisheye (Vertical, Left)

EDSR [4] SwinIR [3]

SwinIR† [3] OSRT†
(d) SUN360 (×4): 047
Fisheye (Vertical, Left)

EDSR [4] SwinIR [3]

SwinIR† [3] OSRT†

(e) SUN360 (×4): 096
Perspective (ϕ: −45◦; FOV: 90◦)

EDSR [4] SwinIR [3]

SwinIR† [3] OSRT†
(f) SUN360 (×4): 032

Perspective (ϕ: −30◦; FOV: 90◦)

EDSR [4] SwinIR [3]

SwinIR† [3] OSRT†

Figure 3. Visual comparisons of SR results under Fisheye downsampling. † denotes applying DF2K-ERP as augmented dataset.



(a) ERP

(b) Fisheye (c) Perspective
Figure 4. Visualization of ×8 SR results (SUN360-062).



(a) ERP

(b) Fisheye (c) Perspective
Figure 5. Visualization of ×4 SR results (ODI-SR-066).



(a) ERP

(b) Fisheye (c) Perspective
Figure 6. Visualization of ×2 SR results (SUN360-007).
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