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A. Detail of panel geometry embedding

Given the stride S and the interval I , we generate N
panels in resolution He × I from the input RGB ERP in
resolution He ×We, where N = We

S . To make the network
aware of ERP distortion, we generate the geometric features
in the same size as the output of layer1 and add them together
as the input of layer2. Note that the output feature map of
layer1 is in shapefc ∈ RCc×He

4 × I
4×N . For a ResNet-34

encoder, Cc = 64. Thus, we generate the corresponding
local and global 3D Cartesian coordinates of each point from
an image in resolution He

4 × We

4 , the size of each panel is
He

4 × I
4 . For a pixel Pe(xe, ye) located on this low-resolution

ERP, its corresponding azimuth angle φ and the polar angle
θ on a sphere are computed as:{

φ = 8πxe

We

θ = 4πye

He

(1)

Given the azimuth angle φ and the polar angle θ of a point
on a unit sphere, the absolute 3D Cartesian coordinates and
relative 3D Cartesian coordinates are computed as described
in Section 3.3. The input shape to the panel geometry em-
bedding network is fg ∈ R5×He

4 × I
4×N and the output is

f ′
g ∈ RCc×He

4 × I
4×N .

B. Ablation study of the backbone selection

Method MRE MAE RMSE δ1

ResNet-18 0.1206 0.2162 0.3537 0.8605
ResNet-34 0.1033 0.1859 0.3212 0.8976

Table 1. Ablation study of the backbone used in PanelNet.

We test the impact of different backbones in our model.
The experiment is performed on Stanford2D3D [1] for depth
estimation. The models are constructed without the panel ge-
ometry embedding network and Local2Global Transformer.

Since partitioning the entire panorama into panels with over-
laps greatly increase the computational complexity, we test
ResNet-18 and ResNet-34 rather than vision Transformers
as backbones. As shown in Table 4, ResNet-34 surpasses its
counterpart by a large margin with its deeper structure. We
use ResNet-34 as our backbone for the experiments in our
paper.

C. Ablation study of the Local2Global Trans-
former structure

We further conduct an ablation study to show the effect
of stacking the Window Blocks and Panel Blocks succes-
sively in a loop and using relative position embedding for
Panel Blocks. All the networks are conducted using the best
PanelNet structure described in Section 4.6 with different
Transformer architectures. We train and evaluate these net-
works on Stanford2D3D [1] dataset for depth estimation. The
stride is set to 32 and the interval is 128. As we observed in
Table 2, changing the default Transformer blocks order and
using relative position embedding for Panel Blocks reduces
the power of our proposed Local2Global Transformer. For
the best performance, we stack Window Blocks from low
patch resolution to high and add Panel Blocks after all the
Window Blocks. We use absolute position embedding for
Panel Blocks.

Method MRE MAE RMSE δ1

Successively 0.0903 0.1649 0.3016 0.9151
Relative 0.0856 0.1588 0.3016 0.9195
Local2Global 0.0829 0.1520 0.2933 0.9242

Table 2. Ablation study of different Transformer structures. ”Suc-
cessively” stands for stacking Window Blocks and Panel Blocks
successively in a loop. ”Relative” stands for using relative position
embedding for Panel Blocks. ”Local2Global” stands for the Trans-
former structure used for our best result in the paper.
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Figure 1. More qualitative results of depth estimation on Stanford2D3D [1] (top 5 rows) and Matterport3D [2] (down 5 rows). We also show
the corresponding error maps. The darker in color the smaller in error.
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Figure 2. More qualitative results of indoor semantic segmentation on Stanford2D3D [1] dataset.
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Figure 3. Qualitative results of room layout estimation of our model against LGT-Net [3] on PanoContext [7] and Stanford2D3D [8]. We
show the room layout predictions without pre-processing and post-processing. We show room layouts (left) together with the floor plan
(right). The blue lines are the ground truth and the green lines are the predictions.



Method overall beam board bookcase ceiling chair clutter column door floor sofa table wall window

Per class mIoU%

HoHoNet [6] 43.3 2.5 44.7 41.4 83.8 49.6 33.6 5.0 56.5 94.3 10.0 47.3 64.6 29.0
Ours 46.3 5.2 59.5 46.5 79.8 45.1 28.6 14.2 53.8 91.8 16.8 49.1 65.7 45.4

Per class mAcc%

HoHoNet [6] 53.9 10.0 54.0 56.4 95.4 66.7 47.5 7.4 68.6 97.8 11.2 70.2 82.5 33.0
Ours 58.7 20.9 71.8 64.5 93.2 58.7 42.4 22.5 63.6 95.8 22.3 74.6 81.9 51.5

Table 3. Perclass quantitative results of semantic segmentation on Stanford2D3D [1] dataset.

D. Additional depth estimation results

We show more depth estimation results against Ho-
HoNet [6], SliceNet [5] and Omnifusion [4], shown in Fig-
ure 1. We train a 2-iteration Omnifusion [4] model according
to their official code on Matterport3D [2] dataset and show
their results. We present the depth maps together with the
error maps for evaluation. The results show that our model
predicts smooth and continuous depth for indoor structures
and captures more detail of the small objects such as chairs
and tables. The overall depth error of our method is much
lower than the previous methods.

E. Additional semantic segmentation results

We show per-class IoU and per-class Acc for semantic
segmentation on Stanford2D3D [1] in the resolution of 256×
512. We compare our model against HoHoNet [6], results
shown in Table 3. We achieve higher IoU in 8 classes among
13 classes and higher Acc in 7 classes among 13 classes
using only RGB image as input. We show more qualitative
results of indoor 360 semantic segmentation in Figure 2. Our
model predicts more accurate and continuous object edges
(e.g. whiteboards, doors) compared to HoHoNet [6].

F. Qualitative results of layout estimation

We present the qualitative results of our model on two
panorama layout estimation datasets, PanoContext [7] and
the extended Stanford2D3D [8] dataset. Following the pre-
vious methods, we train our network using the mixture of
PanoContext [7] and Stanford2D3D [8] dataset. Since we use
the same indoor layout representation and similar training
setup of LGT-Net [3], we compare our results against theirs,
shown in Figure 3. The results of LGT-Net [3] are obtained
from their official code and pre-trained weights. Our model
shows comparable performance against LGT-Net [3] on both
datasets.
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