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A. Introduction
In this supplementary material, we elaborate the details

on the following aspects:

1. Additional derivations and analyses (Sect. B), pro-
viding additional remarks for Eq.(14),(16), and (19) in
the submitted paper.

2. Further analyses (Sect. C), including the connection
of the proposed FME with previous methods and the
influence of optical flow extractor.

3. Benchmarking reproducibility (Sect. D), where we
provide evidence for guaranteeing the reproducibility
of all the methods in our benchmarks.

4. Architecture details (Sect. E), providing detailed ar-
chitecture of the proposed framework.

5. More visual results (Sect. F), providing more vi-
sual comparisons (figures and videos) between our
approach and the state-of-the-art methods on test
datasets. Videos can be found at https://youtu.
be/Xyn1a2wRQJ8

The equations, theorems, tables, and figures are all num-
bered consecutively to those in the submitted paper.

B. Additional derivations and analyses
B.1. The forward operator has no right inverse

For any forward operator Ĥt = [HT
0→t,H

T
1→t]

T, a nec-
essary condition for the existence of its right inverse is that
Ĥt must have full row rank. However, due to the particular
physical meaning defined in Eq.(11), if the dimension of a
vectorized frame is N , Ĥt should satisfy Ĥt ∈ R2N×N ,
then rank(Ĥt) ≤ min{2N,N} < 2N . So Ĥt does not
have full row rank or right inverse.

B.2. Additional remarks of Eq.(16)

The pseudo inverse of C = [Id,−Id] is easy to be
achieved:C± = 1

2 [I
T
d , − ITd ]

T. Then, the nullspace pro-
jection of C can be formulated as:

NC(y) = (Id −C±C)y =
1

2

[
Id Id
Id Id

]
y. (20)

Donate y = [yT
1 , y

T
2 ]

T, if we suppose the distance metric
Σ = Id and Ĩ

∗
t = [Ĩ

∗T
t,1 , Ĩ

∗T
t,2 ]

T, Eq.(16) can be reformulated
as:

y∗ = arg min
y∈R2N

(
y1 + y2

2
− Ĩ

∗
t,1)

2 + (
y1 + y2

2
− Ĩ

∗
t,2)

2

(21)
whose minimum can be achieved when (y1 + y2)/2 =

(Ĩ
∗
t,1 + Ĩ

∗
t,2)/2. So the projected result is

Ĩ∗NC
t = NC(y

∗) =

[
(Ĩ

∗
t,1 + Ĩ

∗
t,2)/2

(Ĩ
∗
t,1 + Ĩ

∗
t,2)/2,

]
(22)

and the corresponding final solution is I∗t = (Ĩ
∗
t,1 + Ĩ

∗
t,2)/2.

However, supposing Σ = Id may not be the best choice, so
we benefit from end-to-end training and predict a dynamic
blending mask as a diagonal matrix, yielding Eq.(17).

B.3. Gradient of the modified ℓ2 error

We use the variant of standard ℓ2 error: log(∥I∗t−Igtt ∥22+
ϵ) whose gradient is

2×(I∗t−Igtt )
∥I∗t−Igtt ∥2

2+ϵ
. Compared with the gradi-

ent of the standard ℓ2 error:2×
(
I∗t − Igtt

)
, the denominator

can mitigate the diminishing gradient issue when the pre-
diction is close to the ground truth.

C. Further analyses
C.1. Connection of FME with previous methods

To understand the connection with previous works, it is
instructive to consider some special cases of Eq. (7) and
Eq. (8).

1) Connection with Quadratic [11]: In Eq. (8), if
W−1 ≡ W1 ≡ W2 ≡ 1/3, then the proposed method de-
generates into [11], where the confidence no longer works.

2) Connection with Quadratic [18]: In Eq. (8), if
W−1 ≡ W1 ≡ 1/2 and W2 ≡ 0, then the proposed
method degenerates into [18], where the approximated tra-
jectory will faithfully pass through measurements at t−1

and t1.
3) Connection with Linear: In Eq. (7), if W−1 ≡

W2 ≡ 0 and W1 ≡ 1, then we can get F0→1 ≡ A + B,
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Table 5. Comparing our methods with the control groups on the dataset of GoPro in terms of PSNR and SSIM.

QVI QVI-RAFT EQVI EQVI-RAFT DBVI Ours

PSNR 30.52 30.91 30.81 31.12 31.73 32.31
SSIM 0.941 0.942 0.942 0.943 0.947 0.951

Table 6. Comparing our reimplementations with reference results on the GoPro dataset in terms of PSNR/SSIM.

EQVI M2M IFRNet RIFEm

Reference 28.10/0.915 29.76/0.919 29.84/0.920 29.68/0.924
Retrained 30.81/0.942 30.52/0.933 30.00/0.928 29.79/0.925

Table 7. Comparing our reimplementations with reference results on the Vimeo-90K (setpulates) dataset in terms of PSNR/SSIM.

EQVI M2M IFRNet RIFEm GDConv ST-MFNet

Reference 29.71/0.934 35.16/0.971 35.90/0.973 35.27/0.972 35.58/0.958 36.49/0.976
Retrained 35.16/0.973 35.56/0.973 36.37/0.976 35.87/0.974 35.58/0.972 36.46/0.976

Table 8. Quantitative comparison with FILM for 2× VFI.

Vimeo-90K
(septulets)

UCF101 DAVIS
SNU-FILM

Easy Medium Hard Extreme

FILM-L1 35.83 / 0.972 32.85 / 0.969 27.59 / 0.881 40.20 / 0.991 36.02 / 0.980 30.49 / 0.936 24.87 / 0.854
Ours 36.33 / 0.975 33.25 / 0.970 28.84 / 0.905 40.67 / 0.991 37.36 / 0.985 32.21 / 0.955 26.22 / 0.877

where A and B can be arbitrary values, but their sum should
be equal to F01. If A is set to 0, then B ≡ F01, yielding
f(τ,A,B) = F0→1τ , which is in line with the linear ap-
proximation.

C.2. Influence of optical flow extractor

Following DBVI [19], we use RAFT [16] to compute the
optical flows among the input frames, which is a more ac-
curate flow extractor compared with those used in QVI [18]
and EQVI [11]. To prove that the superiority of our pro-
posed method does not merely benefit from a better flow
extractor, we establish control groups by retraining QVI
and EQVI with RAFT on the training set of GoPro under
the same settings as our submitted paper. The comparisons
are reported in Table. 5, where all the methods are based
on the quadratic motion model. Among the 6 methods,
QVI-RAFT, EQVI-RAFT, DBVI, and our method are pow-
ered with RAFT. By comparing QVI-RAFT with QVI, or
EQVI-RAFT with EQVI, it can be concluded that a bet-
ter optical flow extractor does improve the performance of
VFI. However, just improving the flow extractor is inade-
quate to make them comparable with the leading methods
like DBVI. Our method still achieves a significant advan-
tage thanks to the novel Focalized Motion Estimation and
Range-nullspace Synthesis.

D. Benchmarking Reproducibility

D.1. Experiments for 8× VFI

In the submitted paper, 11 methods have been com-
pared in the 8× VIF benchmarks trained on GoPro’s train-
ing set, among which, unified evaluation of SloMo [8],
QVI [18], DAIN [1], EDSC [3], FALVR [9], XVFI [15], and
DBVI [19] have been provided by [19]. To guarantee the re-
producibility, we firstly reproduced all the existing methods
reported in [19], under the same settings of [19] or [9], and
then extended the benchmarks with EQVI [11], M2M [6],
IFRNet [10], RIFEm [7]. To verify the reproducibility of
these extra-retrained methods, we use the evaluation results
of their pre-trained models as references. Comparisons are
shown in Table 6, where the results of our retrained models
are better than the reference.

After verifying the reproducibility of these methods, we
then retrain them on the X4K100FPS dataset and Vimeo
(setpules) for further evaluation.

D.2. Experiments for 2× VFI

In the benchmarks of 2× interpolation, in addition to the
methods which have been already evaluated in [9, 14, 19]
and the methods we used for 8× evaluation (EQVI, M2M,
IFRNet, RIFE), we additionally retrained the GDConv [13]



and ST-MNet [4]1. See Table 7 for comparisons between
our reimplementations and the references evaluated with the
pre-trained models. All of our reimplementations are com-
parable with the corresponding reference.

The comparison with FILM can be found in Table 8,
where FILM is evaluated with the weight released officially,
which was trained with L1 loss alone for higher scores. Our
method still maintains superiority.

E. Architecture

The proposed framework comprises five deep modules,
which are mainly responsible for contextual feature extrac-
tion C, flow confidence estimation W , motion refinement
M, range space estimation r, and null space estimation g,
respectively.

As shown in Fig. 7, the input frame of C is filtered by
three convolution layers separated by max pooling, yield-
ing three-scale features. Then, each feature is resized back
to the input scale via nearest upsampling and fused by one
additional convolution layer. The final contextual features
consist of the connection of the fused features and the orig-
inal input frame. Remember that only half of the extracted
features are used for confidence estimation. In this paper,
we use the part containing the input frames as Cb

i .

As shown in Fig. 8, the concatenated features fed in
W are firstly compressed by two-layer convolutions and
then encoded by three layers for estimating the confidences,
which are normalized by Softmax.

As shown in Fig. 9, 10, and 11, M, r and g are all
equipped with similar three-scale Unets of different hyper-
parameters. The first block of each encoder transforms the
channels of the input features and maintains the spatial res-
olution, while the others sequentially half the spatial resolu-
tion via strided convolution. The decoders are set up sym-
metrically with skip connections, whose upsampling layer
is also implemented by strided convolution. Then, the out-
puts of each backbone are processed by two heads for esti-
mating different targets.

Except for g, all outputs of convolution layers are nor-
malized by the Group Normalization [17], whose group size
is four. As g should be a Lipschitz continuous network for
reasonable generalization [2], we use the Spectral Normal-
ization [12] instead, which is approximated by one power
iteration2. Besides that, we use GELU [5] for activating the
normalized features.

1The original ST-MNet was trained on the mixed datasets of Vimeo-
90K (septuplets) and BVI. The retrained model we used in our unified
benchmarks for 2× VFI was kindly provided by the authors.

2We recommend referring to [12] for more details about the spectral
normalization

F. More visual results
More visual results are illustrated in Fig. 12, 13, 14, 15,

16, and 17. We also provide more video comparisons in
demo 7367.mp4.
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Figure 7. Architecture of the contextual network C.
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Figure 8. Architecture of the confidence estimation network W .
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Figure 9. Architecture of the refinement network M.
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Figure 10. Architecture of the range space estimation network r.
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Figure 12. Visual comparisons on DAVIS. We overlay the nearest 2 input frames to illustrate the input motion. Best compared in the
electronic version of this paper with zoom.
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Figure 13. Visual comparisons on DAVIS.
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Figure 14. Visual comparisons on DAVIS.
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Figure 15. Visual comparisons on DAVIS (top 3 rows) and SNU-FILM (bottom 1 row).
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Figure 16. Visual comparisons on SNU-FILM.



Ground Truth EQVI M2M RIFE DBVI ProposedOverlayed inputs

Figure 17. Visual comparisons on X4K1000FPS (top 1 row), Adobe240 (middle 3 rows) and GoPro (bottom 2 rows).
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