Rotation-Invariant Transformer for Point Cloud Matching
Supplementary Material

In this appendix, we first provide the implementation de-
tails in Sec. A. Then the network architecture is detailed in
Sec. B. Moreover, the definition and ablation study of the
geometry representation are illustrated in Sec. C. The de-
tails of the loss function and the evaluation metrics are given
in Sec. D and Sec. E, respectively. Furthermore, more quan-
titative and qualitative results are demonstrated in Sec. F
and Sec. G, respectively. Finally, the runtime is analyzed in
Sec. H, and the limitations are discussed in Sec. I.

A. Implementation Details

We implement RoITr with PyTorch [9]. The match-
ing model can be trained end-to-end on a single Nvidia
RTX 3090 with 24G memory. In practice, we train
the model on-parallel using 4x Nvidia 3090 GPUs for
~35 epochs on both 3DMatch/3DLoMatch [6, 19] and
4DMatch/4DLoMatch [8]. It takes ~35 hours and ~30
hours for full convergence on 3DMatch/3DLoMatch and
4DMatch/4DLoMatch, respectively. The batch size is set
to 1. We use an Adam optimizer [7] with an initial learn-
ing rate of le-4, which is exponentially decayed by 0.05
after each epoch. On 3DMatch/3DLoMatch, we select
|C'| = 256 superpoint correspondences with the highest
scores. Based on each superpoint correspondence, we fur-
ther extract the mutual top-3 point correspondences whose
confidence scores are larger than 0.05 as the point corre-
spondences. For non-rigid matching, we first pick the super-
point correspondences whose Euclidean distance is smaller
than 0.75 (pick the top-128 instead if the number of selected
correspondences is smaller than 128) and extract the mutual
top-2 point correspondences with scores larger than 0.05.

B. Network Architecture

PPFTrans Encoder-Decoder. We detail the architecture
of PPFTrans in Tab. 1. The encoder part has 4x encoder
blocks. In each block, AAL first downsamples the points
and aggregates the information in a local vicinity. PAL fur-
ther enhances the features with both the pose-agnostic local
geometry and highly-representative learned context. The
decoder part also comprises 4x decoder blocks. In each
block (except for Block,), TUL first subsamples the points

and incorporates the information flowing from the encoder
via skip connections. The obtained features are further en-
hanced by the following PAL.

Global Transformer. The details of the global trans-
former are demonstrated in Tab. 2. It has 3x trans-
former blocks, each comprising a geometry-aware self-
attention module (GSM) followed by a position-aware
cross-attention module (PCM). In each transformer block,
GSM first aggregates the global context individually for
each point cloud. Then in PCM, the global context flows
from the second frame to the first one and then from the
first frame to the second one.

Feed-Forward Network. The structure of the feed-forward
network is illustrated in Fig. 1. It details the feed-forward
network in the context branch of GSM in Fig. 4 of the main

paper.

C. Geometry Representation

Taking superpoints P’ € R™ >3 as an instance, the ge-
ometry representation R’ € R %" %<’ proposed in [10] de-
picts the pairwise geometric relationship among superpoints
in a rotation-invariant fashion. It comprises a distance-
based part R}, € R™ *n" %<’ a5 well as an angle-based part
RIA c Rn’xn’x?)xc'.

Euclidean Distance. The pairwise Euclidean distance is
defined as p; ; = |[p; — Pjll2, which is projected to a ¢’
dimension (note that ¢’ must be an even number) embedding
via the sinusoidal function [14]:

{ Riy(7,, 20+ 1) = sin(gfdrer),

R, (i, j, 20 +2) = cos({L2aiL7L),

with0 <[ < ¢'/2and o4 = 0.2.

Angles. Given a superpoint pair (p;,p}), the 3-nearest
neighbors of p; w.r.t. P’ is first retrieved and denoted as
N (7). For each k € N (i), we calculate the angle between
two vectors by af; = Z(pj — p}, P} — p}) [3,4], upon



Stage ‘ Block

Operation

Input | \ P =(P,N,X e R"*1)
e AAL(n x 1) — n x 64
Blocky (P) — P1 PAL(n x 64) — 1 x 64
. AAL(n x 64) — n/4 x 128
Encod Blocks(P1) = P PAL(n/4 x 128) — n/4 x 128
neoder Blocks (P3) - P AAL(n/4 x 128) — n/16 x 256
Ocks2 3 PAL(n/16 x 256) — n/16 x 256
AAL(n/16 x 256) — n/64 x 256
e !
Blocky(Py) =P PAL(n/64 x 256) — 1/64 x 256
. TUL (n/64 x 256) — n/64 x 256
d(pt
Blocki (P") — Pa PAL: n/64 x 256 — 1/64 x 256
- ~ | TUL(n/64 x 256, n/16 x 256) — n/16 x 256
d )
Decoder Blocks (P, P3) = Ps PAL(n/16 x 256) — 116 x 256
ecode Blockd (e Py — P | TUL(1/16 X 256, n/2 5 128) — n/4x 128
ocks (Ps, P2) = Ps PAL(n/4 x 128) — n/4 x 128
- - TUL(n/4 x 128, n x 64) — n x 64
d )
Blocki (P2, P1) = P PAL(n x 64) — n x 64
Output | | P = (P ,N,X'); P=(P,N,X)
Table 1. Detailed architecture of the PPFTrans encoder-decoder.
Block ‘ Module ‘ Operation
Input ‘ ‘ ‘ Pl = (P,7N17X/) ‘ Q, = (Q’?M,7Y/)

Selfy (P') — P}
Trans; Cross (Py, Q1) — P|
Cross; (Q,Py) = Q)

Self, (Q') — Q) | GSM(n/ x ¢) = n/ x ¢ ‘ GSM(m/ x ) - m' x ¢

PCM(n' x ¢,m’' x ) = n' x
PCM(m' x ¢, n’ x ) = m/ x ¢

Selfy(Pf) — P4
Transs Crossa (P}, Q%) — P
Cross2 (95, Py) — Q)

Selfy(Q)) — Qb | GSM(n/ x ¢) = 1’ x ¢ ‘ GSM(m/ x ) - m' x ¢

PCM(n' x ¢/,m' x ') = n' x ¢
PCM(m/ x /,n' x ) —=m' x ¢

Selfy(P}) — P}
Transs Crosss (P4, Q5) — P’
Cross3(Q3, P3) — Q'

Self3(Q}) — Q4 | GSM(n' x ¢) = n/ x ¢/ ‘ GSM(m/ x ) = m’ x ¢

PCM(n' x ¢/,m' x ') - n' x ¢
PCM(m/ x ¢/,n’ x ') = m/ x ¢

Output | \ | P=@P.NX) | 9=(Q.M.Y)
Table 2. Detailed architecture of the global transformer.
. . . . . . . / /
which the ¢’-dimension angle-based embedding is defined over the second last dimension, and Wp, W4 € R¢ *¢
g )
as: stand for two learnable matrices.
k

I (5 s — qj @i /% 3DMatch 3DLoMatch Size  Time

R/, (4, 4, k, 21 + 1) = sin( 1000027/’ ), ) OurModel with | FMR IR RR FMR IR RR
! (5 4 — %53/ Point Pair Features | 97.9 81.8 91.6 886 524 730 9.5M 0.213s
Ry (4,5, k, 20 +2) = cos(qgps0a7 ) GeoTrans 980 826 919 896 543 747 10.IM 0.233s

with 0 <1 < ¢//2 and o, = 15.

The pairwise geometry representation R’ finally reads

as:

R =R, Wp + mkz}X(R;lWA),

Table 3. Ablation study of different global geometric embedding.

Ablation Study. Using the geometry representation pro-
posed in [10] (instead of the point pair features [5]) in
the global transformer moderately improves the results (see

3) Tab. 3) despite a slightly larger memory footprint. Us-

ing it, RolTr has a comparable model size with Geo-

where mkaX(R'AWA) indicates the max-pooling operation Trans [10] (10.IM v.s. 9.8M) and is significantly more
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Figure 1. Detailed architecture of the feed-forward network. Lay-
erNorm [2] is used for normalization.

lightweight than Lepard [8] (10.1M v.s. 37.6M).

D. Loss Function

Superpoint Matching Loss. We use the Circle Loss [12]
for superpoint matching. Following [10], we use the over-
lap ratio between the vicinity of superpoints to weigh differ-
ent ground truth superpoint correspondences. More specif-
ically, for each superpoint p; € P’ with an associated fea-
ture X, (unit vector after normalization), we sample a pos-
itive set of superpoints from Q’, denoted as £’ = {d; €
Q'|O(p;},q];) > 7}, where O is the function that calculates
the overlap ratio between the vicinity of two superpoints,
and 7, is the threshold to select positive samples (7,-=0.1 by
default). The overlap ratio function is defined as:

{Pu € GF'3q, € GI s.t. by & @}

Ol 45) = (5w € GTY]

i) g

“4)
where < denotes the correspondence relationship and Gf
is the group of points from P assigned to p; by the Point-
to-Node grouping strategy [17].

We further sample a negative set of superpoints F/ =
{d; € Q'|O(p},dj;) = 0}. Then for P’, the superpoint
matching loss is computed as:

1 ¢
Lr = HZlog[1+
i=1

(2
Y a0 Y A

qjeel q,eFf

®)

with 7/ = O(p;,q;) and & =% - ¥’ll2. Moreover,

A, and Ay are the positive and negative margins (A.=0.1
and A=1.4 by default). 857 = 'y(dg —A.) and ﬁ}’k =
v(A s —d¥) are the weights individually determined for dif-
ferent samples, with  a hyper-parameter. The same loss for
Q' is defined in a similar way, and the overall loss reads as

Ls=(LF +£9))2.

Point Matching Loss. For each superpoint correspon-
dence C; = (pj,q;) € C’, we adopt a negative log-
likelihood loss [1 1] on its corresponding normalized él S
RUGTHDXAGTIHD - We define M, = {(u,v)|pu <
G, with p, € GF.q, € G?} as the set comprising
the indices of corresponding points. We further define
T = {ulpy ¥ @.Va, € G} and i = {v|q, @
Pu, VDu € Gf } as the sets of indices of points that have no
correspondence in the opposite frame, with < depicting the
non-correspondence relationship. Then the point matching
loss on C; can be defined as:

I _ N ol
Ly=- Z log 8y, — Z log S0, G241

(u,v)EMy u€Ty

Al
_ Z log Sarisie
vEJ]

(6)

where !, , 1= S;(u,v) stands for the entry on the u'" row

and v'" column of S;. The overall point matching loss reads
— Ic|
as Ly = @7 2121 £y

E. Detailed Metrics

Given a point cloud pair P € R"*3 and Q € R™*3,
RolTr generates a correspondence set ¢ by matching the
downsampled point cloud pair P € R"*3 and Q € R™*3,
We detail all the metrics for evaluation hereafter.

Inlier Ratio (IR). IR counts the fraction of putative cor-
respondences (P;, q;) € C whose Euclidean distance is un-
der a threshold 74 (0.1m on 3DMatch/3DLoMatch, 0.04m
on 4DMatch/4DLoMatch) under the ground-truth transfor-
mation T*:

e 1

with 1(+) the indicator function.

Yo T B — Gl <), (D

(Pi,a;)€C

Feature Matching Recall (FMR). FMR counts the frac-
tion of point cloud pairs whose IR is larger than a threshold
79 = 0.05:

I7]

1 N
> UZ(GTS) > ), (8)
t=1



with 7 the testing set and 7; the ¢ point cloud pair in the
dataset.

Registration Recall (RR). RR computes the fraction of
point cloud pairs that are registered correctly based on
the putative correspondences, measured by the Root-Mean-
Square Error (RMSE). Following [6], we define RMSE on
the original 3DMatch/3DLoMatch as:

R1(C|CY) = IT(p:) —a;ll3, 9

1
c*| 2

(pi,a;)€C*

with C* the ground-truth correspondence set established
upon P and Q, and T the transformation estimated based
on C. On Rotated 3DMatch/3DLoMatch, we follow [16, 18]
and define the RMSE as:

> IT(p:) — T=(pa)l3,  (10)

p:cP

R 1
2(C|T*,P) ~ -

with T the transformation estimated based on C and T* the
ground-truth transformation. RR is finally calculated as:

R(T) = 772 Zn (R1(C|C*) < 73) or
Y
72 Z]l R2(C|T*,P)) < 73),
with 73 = 0.2m.
Non-Rigid Feature Matching Recall (NFMR). NFMR

counts the fraction of ground-truth correspondences C*
that can be recovered by the putative correspondences C.
The deformation flow d,, for each putative correspondence
(Pu, Qo) € C is defined as d,, = Qv — Pu. Then for each
(pi,q;) € C*, the deformation flow can be computed via
interpolation:

Zué/\/(i) widy 1

d;, = — with w!, = ——————,
' Zue./\/(i) wilL ’ ||pz - pu||2

12)

where N (i) indicates the k-nearest neighbor (k = 3inprac-
tice) of p; w.r.t. points P, s.t. (Pu,q») € C. NEMR is
finally computed by:

4 1

(pi,a;)€C*

Fn(C*

dif2 <m), (13)

with d the ground-truth deformation flow and 74=0.04m in
practice.

F. More Quantitative Results

Varying Correspondence Number on Rotated Data. We
further analyze the performance of different methods w.r.t.
the varying number of correspondences on rotated data. The
superiority of RoITr can be observed in Tab. 4.

Rotated 3DMatch Rotated 3DLoMatch
# Samples 5000 2500 1000 500 250 | 5000 2500 1000 500 250

Feature Matching Recall (%) 1

SpinNet [ 1] 974 974 967 965 941 | 752 749 726 69.2 618
Predator [6] 962 962 96.6 96.0 960 | 73.7 742 750 748 735
CoFiNet [17] 974 974 972 972 973 | 786 788 792 789 792
YOHO [15] 97.8 978 974 976 964 | 778 778 763 739 673
RIGA [16] 98.2 982 982 98.0 98.1 | 845 84.6 845 842 844
GeoTrans [10]  97.8 979 98.1 97.7 973 | 858 857 865 86.6 86.1
RolTr (OQurs) 98.2 98.1 98.1 981 98.1 | 894 892 891 891 89.0

Inlier Ratio (%) T

SpinNet [1] 487 460 406 351 290|257 239 208 179 156
Predator [6] 528 534 525 500 456 | 224 235 230 232 216
CoFiNet[17]  46.8 482 490 493 493 | 215 228 236 238 238
YOHO [15] 641 604 535 463 369|232 232 192 157 121
RIGA [16] 685 698 707 710 712 | 321 335 343 347 350
GeoTrans [10] 682 725 733 795 823 | 40.0 403 427 495 54.1
RolTr (Ours) 823 823 826 826 826 | 532 549 551 552 553

Registration Recall (%) 1

SpinNet [ 1] 932 932 911 874 770 | 61.8 59.1 53.1 441 307
Predator [6] 920 928 920 922 895 | 586 595 604 586 558
CoFiNet [17] 92.0 914 91.0 903 896 | 625 609 609 599 565
YOHO [15] 925 923 924 902 874 | 66.8 67.1 645 582 448
RIGA [16] 93.0 930 926 918 923 | 669 676 670 665 662
GeoTrans [10]  92.0 919 91.8 915 914 | 71.8 720 720 716 709
RolTr (Ours) 947 949 944 944 942 | 772 765 76.6 765 76.0

Table 4. Quantitative results on Rotated 3DMatch & 3DLoMatch
with a varying number of points/correspondences.

Ablation Study on (Rotated) 3DMatch. We also con-
duct ablation study on (Rotated) 3DMatch, as shown in
Tab. 5. Similar to the ablation study on (Rotated) 3DLo-
Match shown in the main paper, our default model achieves
the best performance, which further confirms the signifi-
cance of each individual design of RolTr.

3DMatch
Origin | Rotated
Category Model FMR IR RR FMR 1R RR
1.PT[ 96.7 710 876 964 69.5 905
Local *2. PPF+PT [ 979 80.1 912 978 79.8 939
a. Loca 3. Axyz+0ur§ - - - - - -
*4. Ours 98.0 82.6 919 982 823 947

b. Aggregation  *2. avg pooling 98.1 81.8 92.1 982 818 948

\
*1. max pooling ‘97.9 80.8 90.7 97.8 80.8 94.1

3, Ours 98.0 82.6 919 982 823 947
Backb 1. KPConv [ 97.9 746 91.1 973 728 943

¢. Backbone w3 Ours 98.0 826 919 982 823 947
d. Global *1. GeoTrans [10] | 97.9 82.6 90.8 98.0 823 945

- Lloba 2. Ours 98.0 82.6 919 982 823 947
#1.g=0 985 658 909 983 659 937

e #Global #2.g=1 984 748 908 98.5 748 942

: 3.9 = 3 (Ours) | 980 82.6 919 982 823 947
4, g 98.1 820 917 980 820 946

Table 5.  Ablation study on (Rotated) 3DMatch. 5,000

points/correspondences are leveraged. * indicates the methods
with intrinsic rotation invariance.



Method Data (s)] Model (s)] Total (s)]
Lepard [5] 0.444 0.051 0.495
GeoTrans [10] 0.194 0.076 0.270
RolTr (Ours) 0.023 0.210 0.233

Table 6. Runtime comparison.

G. More Qualitative Results

Indoor Scenes: 3DLoMatch. We show more qualitative
results on the challenging 3DLoMatch benchmark in Fig. 2.
Deformable Objects: 4DLoMatch. More qualitative re-
sults of the 4DLoMatch benchmark consisting of partially-
scanned deformable objects are demonstrated in Fig. 3.

H. Runtime

We show the runtime comparison with Lepard [8] and
GeoTrans [10] in Tab. 6. We run all the methods on a ma-
chine with a single Nvidia RTX 3090 GPU and an AMD
Ryzen 5800X 3.80GHz CPU. All the models are tested
without CPU parallel and with a batch size of 1. All the
reported time is averaged over the 3DMatch testing set that
consists of 1,623 point cloud pairs. The column “Data”
counts the runtime for data preparation, and the column
”Model” reports the time for generating descriptors from
the prepared data. As shown in Tab. 6, RoITr has the highest
data preparation and overall speed while the lowest model
speed. That is mainly due to the relatively low speed of the
attention mechanism compared to convolutions, e.g., KP-
Conv [13] used in both Lepard and GeoTrans, and also
because we do the Farthest Point Sampling (FPS) and k-
nearest neighbor search on GPU, which is counted into the
model time.

I. Limitations

Further Discussion. Although RolTr achieves remarkable
performance on both the rigid and non-rigid scenarios, we
also notice the drawbacks of our method. The first is the
efficiency of the attention mechanism. Although our local
attention mechanism runs faster compared to that of Point
Transformer [20], its running speed is still lower than that
of convolutions, as shown in Tab. 6. Moreover, the intrin-
sic rotation invariance comes at the cost of losing the ability
to match symmetric structures (see the 4DLoMatch data of
Fig. 4). Furthermore, RoITr mainly relies on feature dis-
tinctiveness to implicitly filter out the occluded areas dur-
ing the matching procedure, which makes it fail in cases
with extremely limited overlap (see the 3DLoMatch data of
Fig. 4). Finally, as normal data augmentation cannot work
on intrinsically rotation-invariant methods, more data is re-
quired to train a larger model.

Failure Cases. We further show some failure cases in
Fig. 4. It can be observed that the failure on 3DLoMatch is
caused by an extremely limited overlap on the flattened ar-
eas. In the first row, the overlap ratio is only 17.6%, and the
overlap region is mainly on the floor. In the second row, the
overlap region is even more limited (with an overlap ratio of
10.7%) and mainly on a wall. For the 4DLoMatch, the fail-
ure is mainly due to the extremely limited overlap and the
ambiguity caused by the symmetric structure. The first row
shows a case with the two frames of point cloud showing a
horse’s left and right parts, with only 18.1% overlap in the
middle. The second row with 17.9% overlap ratio also has
a strong left-right ambiguity due to the symmetric structure
of a pig, which accounts for many left-right mismatches.
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Figure 4. Failed cases on 3DLoMatch and 4DLoMatch.
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