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In this appendix, we first provide the implementation de-

tails in Sec. A. Then the network architecture is detailed in

Sec. B. Moreover, the definition and ablation study of the

geometry representation are illustrated in Sec. C. The de-

tails of the loss function and the evaluation metrics are given

in Sec. D and Sec. E, respectively. Furthermore, more quan-

titative and qualitative results are demonstrated in Sec. F

and Sec. G, respectively. Finally, the runtime is analyzed in

Sec. H, and the limitations are discussed in Sec. I.

A. Implementation Details

We implement RoITr with PyTorch [9]. The match-

ing model can be trained end-to-end on a single Nvidia

RTX 3090 with 24G memory. In practice, we train

the model on-parallel using 4× Nvidia 3090 GPUs for

∼35 epochs on both 3DMatch/3DLoMatch [6, 19] and

4DMatch/4DLoMatch [8]. It takes ∼35 hours and ∼30

hours for full convergence on 3DMatch/3DLoMatch and

4DMatch/4DLoMatch, respectively. The batch size is set

to 1. We use an Adam optimizer [7] with an initial learn-

ing rate of 1e-4, which is exponentially decayed by 0.05

after each epoch. On 3DMatch/3DLoMatch, we select

|C′| = 256 superpoint correspondences with the highest

scores. Based on each superpoint correspondence, we fur-

ther extract the mutual top-3 point correspondences whose

confidence scores are larger than 0.05 as the point corre-

spondences. For non-rigid matching, we first pick the super-

point correspondences whose Euclidean distance is smaller

than 0.75 (pick the top-128 instead if the number of selected

correspondences is smaller than 128) and extract the mutual

top-2 point correspondences with scores larger than 0.05.

B. Network Architecture

PPFTrans Encoder-Decoder. We detail the architecture

of PPFTrans in Tab. 1. The encoder part has 4× encoder

blocks. In each block, AAL first downsamples the points

and aggregates the information in a local vicinity. PAL fur-

ther enhances the features with both the pose-agnostic local

geometry and highly-representative learned context. The

decoder part also comprises 4× decoder blocks. In each

block (except for Block4), TUL first subsamples the points

and incorporates the information flowing from the encoder

via skip connections. The obtained features are further en-

hanced by the following PAL.

Global Transformer. The details of the global trans-

former are demonstrated in Tab. 2. It has 3× trans-

former blocks, each comprising a geometry-aware self-

attention module (GSM) followed by a position-aware

cross-attention module (PCM). In each transformer block,

GSM first aggregates the global context individually for

each point cloud. Then in PCM, the global context flows

from the second frame to the first one and then from the

first frame to the second one.

Feed-Forward Network. The structure of the feed-forward

network is illustrated in Fig. 1. It details the feed-forward

network in the context branch of GSM in Fig. 4 of the main

paper.

C. Geometry Representation

Taking superpoints P′ ∈ R
n′×3 as an instance, the ge-

ometry representation R′ ∈ R
n′×n′×c′ proposed in [10] de-

picts the pairwise geometric relationship among superpoints

in a rotation-invariant fashion. It comprises a distance-

based part R′
D ∈ R

n′×n′×c′ as well as an angle-based part

R′
A ∈ R

n′×n′×3×c′ .

Euclidean Distance. The pairwise Euclidean distance is

defined as ρi,j = ‖p′
i − p′

j‖2, which is projected to a c′-
dimension (note that c′ must be an even number) embedding

via the sinusoidal function [14]:{
R′

D(i, j, 2l + 1) = sin(
ρi,j/σd

100002l/c′
),

R′
D(i, j, 2l + 2) = cos(

ρi,j/σd

100002l/c′
),

(1)

with 0 ≤ l < c′/2 and σd = 0.2.

Angles. Given a superpoint pair (p′
i,p

′
j), the 3-nearest

neighbors of p′
i w.r.t. P′ is first retrieved and denoted as

N (i). For each k ∈ N (i), we calculate the angle between

two vectors by αk
i,j = ∠(p′

k − p′
i,p

′
j − p′

i) [3, 4], upon
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Stage Block Operation

Input P = (P,N,X ∈ R
n×1)

Encoder

Blocke
1(P) → P1

AAL(n× 1) → n× 64
PAL(n× 64) → n× 64

Blocke
2(P1) → P2

AAL(n× 64) → n/4× 128
PAL(n/4× 128) → n/4× 128

Blocke
3(P2) → P3

AAL(n/4× 128) → n/16× 256
PAL(n/16× 256) → n/16× 256

Blocke4(P3) → P ′ AAL(n/16× 256) → n/64× 256
PAL(n/64× 256) → n/64× 256

Decoder

Blockd4(P ′) → P̂4
TUL (n/64× 256) → n/64× 256
PAL: n/64× 256 → n/64× 256

Blockd
3(P̂4,P3) → P̂3

TUL(n/64× 256, n/16× 256) → n/16× 256
PAL(n/16× 256) → n/16× 256

Blockd
2(P̂3,P2) → P̂2

TUL(n/16× 256, n/4× 128) → n/4× 128
PAL(n/4× 128) → n/4× 128

Blockd1(P̂2,P1) → P̂ TUL(n/4× 128, n× 64) → n× 64
PAL(n× 64) → n× 64

Output P ′ = (P′,N′,X′); P̂ = (P̂, N̂, X̂)

Table 1. Detailed architecture of the PPFTrans encoder-decoder.

Block Module Operation

Input P ′ = (P′,N′,X′) Q′ = (Q′,M′,Y′)

Trans1

Self1(P ′) → P̃ ′
1 Self1(Q′) → Q̃′

1 GSM(n′ × c′) → n′ × c′ GSM(m′ × c′) → m′ × c′

Cross1(P̃ ′
1, Q̃′

1) → P ′
1 PCM(n′ × c′,m′ × c′) → n′ × c′

Cross1(Q̃′
1,P ′

1) → Q′
1 PCM(m′ × c′, n′ × c′) → m′ × c′

Trans2

Self2(P ′
1) → P̃ ′

2 Self2(Q′
1) → Q̃′

2 GSM(n′ × c′) → n′ × c′ GSM(m′ × c′) → m′ × c′

Cross2(P̃ ′
2, Q̃′

2) → P ′
2 PCM(n′ × c′,m′ × c′) → n′ × c′

Cross2(Q̃′
2,P ′

2) → Q′
2 PCM(m′ × c′, n′ × c′) → m′ × c′

Trans3

Self3(P ′
2) → P̃ ′

3 Self3(Q′
2) → Q̃′

3 GSM(n′ × c′) → n′ × c′ GSM(m′ × c′) → m′ × c′

Cross3(P̃ ′
3, Q̃′

3) → P̃ ′ PCM(n′ × c′,m′ × c′) → n′ × c′

Cross3(Q̃′
3,P ′

3) → Q̃′ PCM(m′ × c′, n′ × c′) → m′ × c′

Output P̃ ′ = (P′,N′, X̃′) Q̃′ = (Q′,M′, Ỹ′)

Table 2. Detailed architecture of the global transformer.

which the c′-dimension angle-based embedding is defined

as: ⎧⎨⎩ R′
A(i, j, k, 2l + 1) = sin(

αk
i,j/σa

100002l/c′
),

R′
A(i, j, k, 2l + 2) = cos(

αk
i,j/σa

100002l/c′
),

(2)

with 0 ≤ l < c′/2 and σa = 15.

The pairwise geometry representation R′ finally reads

as:

R′ = R′
DWD +max

k
(R′

AWA), (3)

where max
k

(R′
AWA) indicates the max-pooling operation

over the second last dimension, and WD,WA ∈ R
c′×c′

stand for two learnable matrices.

3DMatch 3DLoMatch Size Time
Our Model with FMR IR RR FMR IR RR

Point Pair Features 97.9 81.8 91.6 88.6 52.4 73.0 9.5M 0.213s
GeoTrans 98.0 82.6 91.9 89.6 54.3 74.7 10.1M 0.233s

Table 3. Ablation study of different global geometric embedding.

Ablation Study. Using the geometry representation pro-

posed in [10] (instead of the point pair features [5]) in

the global transformer moderately improves the results (see

Tab. 3) despite a slightly larger memory footprint. Us-

ing it, RoITr has a comparable model size with Geo-

Trans [10] (10.1M v.s. 9.8M) and is significantly more
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Figure 1. Detailed architecture of the feed-forward network. Lay-

erNorm [2] is used for normalization.

lightweight than Lepard [8] (10.1M v.s. 37.6M).

D. Loss Function
Superpoint Matching Loss. We use the Circle Loss [12]

for superpoint matching. Following [10], we use the over-

lap ratio between the vicinity of superpoints to weigh differ-

ent ground truth superpoint correspondences. More specif-

ically, for each superpoint p′
i ∈ P′ with an associated fea-

ture x̃′
i (unit vector after normalization), we sample a pos-

itive set of superpoints from Q′, denoted as EP
i = {q′

j ∈
Q′|O(p′

i,q
′
j) > τr}, where O is the function that calculates

the overlap ratio between the vicinity of two superpoints,

and τr is the threshold to select positive samples (τr=0.1 by

default). The overlap ratio function is defined as:

O(p′
i,q

′
j) =

|{p̂u ∈ ĜP
i |∃q̂v ∈ ĜQ

j s.t. p̂u ⇔ q̂v}|
|{p̂u ∈ ĜP

i }|
,

(4)

where ⇔ denotes the correspondence relationship and ĜP
i

is the group of points from P̂ assigned to p′
i by the Point-

to-Node grouping strategy [17].

We further sample a negative set of superpoints FP
i =

{q′
j ∈ Q′|O(p′

i,q
′
j) = 0}. Then for P′, the superpoint

matching loss is computed as:

LP
s =

1

n′

n′∑
i=1

log[1+

∑
q′
j∈EP

i

er
j
iβ

i,j
e (dj

i−Δe) ·
∑

q′
k∈FP

i

eβ
i,k
f (Δf−dk

i )],

(5)

with rji := O(p′
i,q

′
j) and dji = ‖x̃′

i − ỹ′
j‖2. Moreover,

Δe and Δf are the positive and negative margins (Δe=0.1

and Δf=1.4 by default). βi,j
e = γ(dji − Δe) and βi,k

f =

γ(Δf −dki ) are the weights individually determined for dif-

ferent samples, with γ a hyper-parameter. The same loss for

Q′ is defined in a similar way, and the overall loss reads as

Ls = (LP
s + LQ

s )/2.

Point Matching Loss. For each superpoint correspon-

dence C′
l = (p′

i,q
′
j) ∈ C′, we adopt a negative log-

likelihood loss [11] on its corresponding normalized Ŝl ∈
R

(|ĜP
i |+1)×(|ĜQ

j |+1). We define Ml = {(u, v)|p̂u ⇔
q̂v with p̂u ∈ ĜP

i , q̂v ∈ ĜQ
j } as the set comprising

the indices of corresponding points. We further define

Il = {u|p̂u � q̂v, ∀q̂v ∈ ĜQ
j } and Jl = {v|q̂v �

p̂u, ∀p̂u ∈ ĜP
i } as the sets of indices of points that have no

correspondence in the opposite frame, with � depicting the

non-correspondence relationship. Then the point matching

loss on C′
l can be defined as:

Ll
p = −

∑
(u,v)∈Ml

log ŝlu,v −
∑
u∈Il

log ŝl
u,|ĜQ

j |+1

−
∑
v∈Jl

log ŝl|ĜP
i |+1,v

,
(6)

where ŝlu,v := Ŝl(u, v) stands for the entry on the uth row

and vth column of Ŝl. The overall point matching loss reads

as Lp = 1
|C′|

∑|C′|
l=1 Ll

p.

E. Detailed Metrics
Given a point cloud pair P ∈ R

n×3 and Q ∈ R
m×3,

RoITr generates a correspondence set Ĉ by matching the

downsampled point cloud pair P̂ ∈ R
n̂×3 and Q̂ ∈ R

m̂×3.

We detail all the metrics for evaluation hereafter.

Inlier Ratio (IR). IR counts the fraction of putative cor-

respondences (p̂i, q̂j) ∈ Ĉ whose Euclidean distance is un-

der a threshold τ1 (0.1m on 3DMatch/3DLoMatch, 0.04m

on 4DMatch/4DLoMatch) under the ground-truth transfor-

mation T∗:

I(Ĉ
∣∣T∗) =

1

|Ĉ|
∑

(p̂i,q̂j)∈Ĉ

1(‖T∗(p̂i)− q̂j‖2 < τ1), (7)

with 1(·) the indicator function.

Feature Matching Recall (FMR). FMR counts the frac-

tion of point cloud pairs whose IR is larger than a threshold

τ2 = 0.05:

F(T ) =
1

|T |

|T |∑
t=1

1(I(Ĉt
∣∣T∗

t ) > τ2), (8)



with T the testing set and Tt the tth point cloud pair in the

dataset.

Registration Recall (RR). RR computes the fraction of

point cloud pairs that are registered correctly based on

the putative correspondences, measured by the Root-Mean-
Square Error (RMSE). Following [6], we define RMSE on

the original 3DMatch/3DLoMatch as:

R1(Ĉ
∣∣C∗) =

√√√√ 1

|C∗|
∑

(pi,qj)∈C∗
‖T̂(pi)− qj‖22, (9)

with C∗ the ground-truth correspondence set established

upon P and Q, and T̂ the transformation estimated based

on Ĉ. On Rotated 3DMatch/3DLoMatch, we follow [16,18]

and define the RMSE as:

R2(Ĉ
∣∣T∗,P) ≈ 1

n

√ ∑
pi∈P

‖T̂(pi)−T∗(pi)‖22, (10)

with T̂ the transformation estimated based on Ĉ and T∗ the

ground-truth transformation. RR is finally calculated as:

R(T ) =
1

|T |

T∑
t=1

1(R1(Ĉ
∣∣C∗) < τ3) or

1

|T |

T∑
t=1

1(R2(Ĉ
∣∣T∗,P)) < τ3),

(11)

with τ3 = 0.2m.

Non-Rigid Feature Matching Recall (NFMR). NFMR

counts the fraction of ground-truth correspondences C∗

that can be recovered by the putative correspondences Ĉ.

The deformation flow d̂u for each putative correspondence

(p̂u, q̂v) ∈ Ĉ is defined as d̂u = q̂v − p̂u. Then for each

(pi,qj) ∈ C∗, the deformation flow can be computed via

interpolation:

di =

∑
u∈N (i) w

i
ud̂u∑

u∈N (i) w
i
u

, with wi
u =

1

‖pi − p̂u‖2
, (12)

where N (i) indicates the k-nearest neighbor (k = 3 in prac-

tice) of pi w.r.t. points p̂u s.t. (p̂u, q̂v) ∈ Ĉ. NFMR is

finally computed by:

FN (C∗∣∣Ĉ) = 1

|C∗|
∑

(pi,qj)∈C∗
1(‖di − d∗

i ‖2 < τ4), (13)

with d∗
i the ground-truth deformation flow and τ4=0.04m in

practice.

F. More Quantitative Results
Varying Correspondence Number on Rotated Data. We

further analyze the performance of different methods w.r.t.

the varying number of correspondences on rotated data. The

superiority of RoITr can be observed in Tab. 4.

Rotated 3DMatch Rotated 3DLoMatch
# Samples 5000 2500 1000 500 250 5000 2500 1000 500 250

Feature Matching Recall (%) ↑
SpinNet [1] 97.4 97.4 96.7 96.5 94.1 75.2 74.9 72.6 69.2 61.8
Predator [6] 96.2 96.2 96.6 96.0 96.0 73.7 74.2 75.0 74.8 73.5
CoFiNet [17] 97.4 97.4 97.2 97.2 97.3 78.6 78.8 79.2 78.9 79.2
YOHO [15] 97.8 97.8 97.4 97.6 96.4 77.8 77.8 76.3 73.9 67.3
RIGA [16] 98.2 98.2 98.2 98.0 98.1 84.5 84.6 84.5 84.2 84.4
GeoTrans [10] 97.8 97.9 98.1 97.7 97.3 85.8 85.7 86.5 86.6 86.1
RoITr (Ours) 98.2 98.1 98.1 98.1 98.1 89.4 89.2 89.1 89.1 89.0

Inlier Ratio (%) ↑
SpinNet [1] 48.7 46.0 40.6 35.1 29.0 25.7 23.9 20.8 17.9 15.6
Predator [6] 52.8 53.4 52.5 50.0 45.6 22.4 23.5 23.0 23.2 21.6
CoFiNet [17] 46.8 48.2 49.0 49.3 49.3 21.5 22.8 23.6 23.8 23.8
YOHO [15] 64.1 60.4 53.5 46.3 36.9 23.2 23.2 19.2 15.7 12.1
RIGA [16] 68.5 69.8 70.7 71.0 71.2 32.1 33.5 34.3 34.7 35.0
GeoTrans [10] 68.2 72.5 73.3 79.5 82.3 40.0 40.3 42.7 49.5 54.1
RoITr (Ours) 82.3 82.3 82.6 82.6 82.6 53.2 54.9 55.1 55.2 55.3

Registration Recall (%) ↑
SpinNet [1] 93.2 93.2 91.1 87.4 77.0 61.8 59.1 53.1 44.1 30.7
Predator [6] 92.0 92.8 92.0 92.2 89.5 58.6 59.5 60.4 58.6 55.8
CoFiNet [17] 92.0 91.4 91.0 90.3 89.6 62.5 60.9 60.9 59.9 56.5
YOHO [15] 92.5 92.3 92.4 90.2 87.4 66.8 67.1 64.5 58.2 44.8
RIGA [16] 93.0 93.0 92.6 91.8 92.3 66.9 67.6 67.0 66.5 66.2
GeoTrans [10] 92.0 91.9 91.8 91.5 91.4 71.8 72.0 72.0 71.6 70.9
RoITr (Ours) 94.7 94.9 94.4 94.4 94.2 77.2 76.5 76.6 76.5 76.0

Table 4. Quantitative results on Rotated 3DMatch & 3DLoMatch

with a varying number of points/correspondences.

Ablation Study on (Rotated) 3DMatch. We also con-

duct ablation study on (Rotated) 3DMatch, as shown in

Tab. 5. Similar to the ablation study on (Rotated) 3DLo-

Match shown in the main paper, our default model achieves

the best performance, which further confirms the signifi-

cance of each individual design of RoITr.

3DMatch
Origin Rotated

Category Model FMR IR RR FMR IR RR

a. Local

1. PT [20] 96.7 71.0 87.6 96.4 69.5 90.5
*2. PPF+PT [20] 97.9 80.1 91.2 97.8 79.8 93.9

3. Δxyz+Ours - - - - - -
*4. Ours 98.0 82.6 91.9 98.2 82.3 94.7

b. Aggregation
*1. max pooling 97.9 80.8 90.7 97.8 80.8 94.1
*2. avg pooling 98.1 81.8 92.1 98.2 81.8 94.8
*3. Ours 98.0 82.6 91.9 98.2 82.3 94.7

c. Backbone
1. KPConv [13] 97.9 74.6 91.1 97.3 72.8 94.3

*2. Ours 98.0 82.6 91.9 98.2 82.3 94.7

d. Global
*1. GeoTrans [10] 97.9 82.6 90.8 98.0 82.3 94.5
*2. Ours 98.0 82.6 91.9 98.2 82.3 94.7

e. #Global

*1. g = 0 98.5 65.8 90.9 98.3 65.9 93.7
*2. g = 1 98.4 74.8 90.8 98.5 74.8 94.2
*3. g = 3 (Ours) 98.0 82.6 91.9 98.2 82.3 94.7
*4. g = 5 98.1 82.0 91.7 98.0 82.0 94.6

Table 5. Ablation study on (Rotated) 3DMatch. 5,000

points/correspondences are leveraged. * indicates the methods

with intrinsic rotation invariance.



Method Data (s)↓ Model (s)↓ Total (s)↓
Lepard [8] 0.444 0.051 0.495
GeoTrans [10] 0.194 0.076 0.270
RoITr (Ours) 0.023 0.210 0.233

Table 6. Runtime comparison.

G. More Qualitative Results

Indoor Scenes: 3DLoMatch. We show more qualitative

results on the challenging 3DLoMatch benchmark in Fig. 2.

Deformable Objects: 4DLoMatch. More qualitative re-

sults of the 4DLoMatch benchmark consisting of partially-

scanned deformable objects are demonstrated in Fig. 3.

H. Runtime

We show the runtime comparison with Lepard [8] and

GeoTrans [10] in Tab. 6. We run all the methods on a ma-

chine with a single Nvidia RTX 3090 GPU and an AMD

Ryzen 5800X 3.80GHz CPU. All the models are tested

without CPU parallel and with a batch size of 1. All the

reported time is averaged over the 3DMatch testing set that

consists of 1,623 point cloud pairs. The column ”Data”

counts the runtime for data preparation, and the column

”Model” reports the time for generating descriptors from

the prepared data. As shown in Tab. 6, RoITr has the highest

data preparation and overall speed while the lowest model

speed. That is mainly due to the relatively low speed of the

attention mechanism compared to convolutions, e.g., KP-

Conv [13] used in both Lepard and GeoTrans, and also

because we do the Farthest Point Sampling (FPS) and k-

nearest neighbor search on GPU, which is counted into the

model time.

I. Limitations

Further Discussion. Although RoITr achieves remarkable

performance on both the rigid and non-rigid scenarios, we

also notice the drawbacks of our method. The first is the

efficiency of the attention mechanism. Although our local

attention mechanism runs faster compared to that of Point

Transformer [20], its running speed is still lower than that

of convolutions, as shown in Tab. 6. Moreover, the intrin-

sic rotation invariance comes at the cost of losing the ability

to match symmetric structures (see the 4DLoMatch data of

Fig. 4). Furthermore, RoITr mainly relies on feature dis-

tinctiveness to implicitly filter out the occluded areas dur-

ing the matching procedure, which makes it fail in cases

with extremely limited overlap (see the 3DLoMatch data of

Fig. 4). Finally, as normal data augmentation cannot work

on intrinsically rotation-invariant methods, more data is re-

quired to train a larger model.

Failure Cases. We further show some failure cases in

Fig. 4. It can be observed that the failure on 3DLoMatch is

caused by an extremely limited overlap on the flattened ar-

eas. In the first row, the overlap ratio is only 17.6%, and the

overlap region is mainly on the floor. In the second row, the

overlap region is even more limited (with an overlap ratio of

10.7%) and mainly on a wall. For the 4DLoMatch, the fail-

ure is mainly due to the extremely limited overlap and the

ambiguity caused by the symmetric structure. The first row

shows a case with the two frames of point cloud showing a

horse’s left and right parts, with only 18.1% overlap in the

middle. The second row with 17.9% overlap ratio also has

a strong left-right ambiguity due to the symmetric structure

of a pig, which accounts for many left-right mismatches.
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Figure 2. More qualitative results on 3DLoMatch. GeoTrans [10] is used as the baseline.
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