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1. Summary of Datasets
In our main text, we evaluate the proposed method

for few-shot learning tasks on 11 benchmark datasets and
domain generalization tasks on ImageNet to its variants
(ImageNet-V2, -Sketch, -A and -R). We summarize the
dataset information in Table 1.

Specifically, the datasets for the few-shot evaluation are
composed of diverse genres, such as recognition of generic
objects, fine-grained objects, scenes, textural images and
satellite images. The diversity can better verify the effec-
tiveness and robustness of the proposed method. To be con-
sistent with previous works [7,27,28], the “BACKGROUND
Google” and “Faces easy” classes are removed in Caltech101
[6]. We also list the used templates [27] for the text-based
classifier construction based on the CLIP’s [22] text branch.

For the generalization datasets, ImageNet-V2 and
ImageNet-Sketch share the same label space with ImageNet
(1000 classes), while the label spaces of ImageNet-A (200
classes) and ImageNet-R (200 classes) are both sub-spaces
of the ImageNet label space. The variants of ImageNet con-
tain substantially different data distributions (See Table 1 De-
scription) from ImageNet, which makes them satisfactory
domain generalization benchmarks. Following CoOp [28],
we choose ImageNet as the source domain data while the
variants as the target one.

2. More Experimental Results and Analyses
2.1. Few-Shot Learning

The full numerical results of Figure 3 in the main text are
presented in Table 2. Note that the results of Tip-Adapter-
F [27] are slightly different from their original paper. The
original Tip-Adapter-F tests their models per epoch of train-
ing and chooses the best one to report the performance, while
other methods such as CoOp test model until the training
is done. To make the comparison fair, we re-run the of-
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ficial code of Tip-Adapter-F and test its models at the end
of training. Overall, our method achieves the best averaged
performance across all shot settings and datasets. In partic-
ular, our method reaches the best performance on ImageNet,
Caltech101 and StanfordCars for all shot settings and on
Flowers102, FGVCAircraft, SUN397, DTD and EuroSAT
for most shot settings. Additionally, despite having limited
tunable parameters, the proposed method can always benefit
from the expansion of training data, i.e., from 1-shot to 16-
shot with the averaged gains from 5.08% to 16.14%. In con-
trast, Tip-Adapter-F [27] achieves similar performance by
linearly increasing the tunable parameters with the number
of shots.

2.2. Training Efficiency

Our TaskRes is not only parameter- and data- efficient but
also highly efficient in training. As illustrated in Figure 2 in
the main text, the high training efficiency is attributed to the
absence of additional network modules (as in adapter-style
tuning [7]) and the elimination of the need to run the text
encoder every time (as in prompt tuning [28]). In particular,
the quantitative results show that TaskRes needs merely 11
minutes, much less than 121 minutes used in prompt tuning
and 16 minutes in adapter-style tuning, when training models
on 4-shot ImageNet with a single GeForce RTX 3090 GPU.

2.3. Ablation Study

Ablation study of TaskRes effectiveness. We present the
full results of the ablation study of our TaskRes effec-
tiveness across 11 benchmark datasets in Table 3. Our
TaskRes achieves notable improvements over both the reg-
ular and enhanced base classifiers across almost all the
datasets. When equipping the regular base classifier with our
proposed TaskRes, the accuracy of the model is improved by
5.08%, 8.06%, 10.65%, 13.80% and 16.14% for 1-, 2-, 4-,
8- and 16-shot settings, respectively. For the model based
on the enhanced base classifier, our method still brings ac-
curacy gains of 3.17%, 4.73%, 5.84%, 3.44% and 2.69% for
the above settings, respectively. However, as mentioned in

1



Name Number of Classes Size (Train / Val / Test) Description Template

ImageNet [4] 1000 1.28M / - /50000 Recognition of generic objects Ensemble of 7 selected templates
Caltech101 [6] 100 4128 / 1649 / 2465 Recognition of generic objects “a photo of a [class].”
OxfordPets [21] 37 2944 / 736 / 3669 Fine-grained classification of pets “a photo of a [class], a type of pet.”
StanfordCars [15] 196 6509 / 1635 / 8041 Fine-grained classification of cars “a photo of a [class].”
Flowers102 [20] 102 4093 / 1633 / 2463 Fine-grained classification of flowers “a photo of a [class], a type of flower.”
Food101 [2] 101 50500 / 20200 / 30300 Fine-grained classification of foods “a photo of a [class], a type of food.”
FGVCAircraft [19] 100 3334 / 3333 / 3333 Fine-grained classification of aircrafts “a photo of a [class], a type of aircraft.”
SUN397 [26] 397 15880 / 3970 / 19850 Scene classification “a photo of a [class].”
DTD [3] 47 2820 / 1128 / 1692 Texture classification “[class] texture.”
EuroSAT [9] 10 13500 / 5400 / 8100 Land use & cover classification with satellite images “a centered satellite photo of [class].”
UCF101 [24] 101 7639 / 1898 / 3783 Action recognition “a photo of a person doing [class].”

ImageNet-V2 [23] 1000 - / - / 10000 New test data for ImageNet Ensemble of 7 selected templates
ImageNet-Sketch [25] 1000 - / - / 50889 Sketch-style images of ImageNet classes Ensemble of 7 selected templates
ImageNet-A [11] 200 - / - / 7500 Natural adversarial examples of 200 ImageNet classes Ensemble of 7 selected templates
ImageNet-R [10] 200 - / - / 30000 Renditions of 200 ImageNet classes Ensemble of 7 selected templates

Table 1. Summary of 11 datasets for few-shot learning and 4 target datasets of domain generalization. The 7 selected templates [27] for
ImageNet series datasets are “itap of a [class].”, “a bad photo of the [class].”, “a origami [class].”, “a photo of the large [class].”, “a [class] in
a video game.”, “art of the [class].” and “a photo of the small [class].”.

Method Setting ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

Zero-Shot CLIP [22]

1-shot

58.18 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.77
CoOp [28] 57.15 87.53 85.89 55.59 68.12 74.32 9.64 60.29 44.39 50.63 61.92 59.59
CLIP-Adapter [7] 61.20 88.60 85.99 55.13 73.49 76.82 17.49 61.30 45.80 61.40 62.20 62.67
Tip-Adapter-F [27] 60.88 88.80 86.04 56.78 81.17 76.22 19.01 61.23 50.49 50.34 66.19 63.38
Ours 61.43 88.80 83.50 58.77 78.77 74.03 21.20 61.93 50.17 61.27 64.57 64.04
Ours* 61.90 88.80 83.60 59.13 79.17 74.03 21.40 62.33 50.20 61.70 64.77 64.28

Zero-Shot CLIP [22]

2-shot

58.18 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.77
CoOp [28] 57.81 87.93 82.64 58.28 77.51 72.49 18.68 59.48 45.15 61.50 64.09 62.32
CLIP-Adapter [7] 61.52 89.37 86.73 58.74 81.61 77.22 20.10 63.29 51.48 63.90 67.12 65.55
Tip-Adapter-F [27] 61.57 89.61 86.06 61.13 85.40 77.05 21.76 63.19 55.32 64.76 68.99 66.80
Ours 62.17 90.13 84.43 62.77 85.63 75.30 23.07 64.33 54.53 65.77 69.10 67.02
Ours* 62.63 90.27 84.63 63.70 86.57 75.17 24.13 64.97 55.13 65.83 70.00 67.55

Zero-Shot CLIP [22]

4-shot

58.18 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.77
CoOp [28] 59.99 89.55 86.70 62.62 86.20 73.33 21.87 63.47 53.49 70.18 67.03 66.77
CLIP-Adapter [7] 61.84 89.98 87.46 62.45 87.17 77.92 22.59 65.96 56.86 73.38 69.05 68.61
Tip-Adapter-F [27] 62.62 90.87 86.46 64.86 89.53 77.46 26.39 65.88 60.25 69.66 72.71 69.70
Ours 62.93 90.63 86.27 66.50 89.50 76.23 24.83 66.67 59.50 72.97 69.70 69.61
Ours* 63.57 90.97 86.33 67.43 90.20 76.10 25.70 67.27 60.70 73.83 70.93 70.28

Zero-Shot CLIP [22]

8-shot

58.18 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.77
CoOp [28] 61.56 90.21 85.32 68.43 91.18 71.82 26.13 65.52 59.97 76.73 71.94 69.89
CLIP-Adapter [7] 62.68 91.40 87.65 67.89 91.72 78.04 26.25 67.50 61.00 77.93 73.30 71.40
Tip-Adapter-F [27] 64.15 91.70 88.28 69.51 91.00 77.90 30.62 69.23 62.93 79.33 74.76 72.67
Ours 64.03 92.23 87.07 70.57 94.30 76.90 29.50 68.70 64.23 78.07 74.77 72.76
Ours* 64.67 92.40 87.17 71.83 94.73 76.40 31.50 68.73 64.77 79.33 75.33 73.35

Zero-Shot CLIP [22]

16-shot

58.18 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.77
CoOp [28] 62.95 91.83 87.01 73.36 94.51 74.67 31.26 69.26 63.58 83.53 75.71 73.42
CLIP-Adapter [7] 63.59 92.49 87.84 74.01 93.90 78.25 32.10 69.55 65.96 84.43 76.76 74.44
Tip-Adapter-F [27] 65.44 92.63 88.18 75.75 94.23 78.11 35.86 71.00 66.94 84.94 79.03 75.65
Ours 64.75 92.90 88.10 74.93 96.10 78.23 33.73 70.30 67.57 82.57 76.87 75.10
Ours* 65.73 93.43 87.83 76.83 96.03 77.60 36.30 70.67 67.13 84.03 77.97 75.78

Table 2. Full numerical results of performance comparison on few-shot learning.

the limitations (in main text), we observe a negative trans-
fer on OxfordPets and Food101, similar to CoOp [28]. This
negative transfer gap decreases with the number of shots in-
creasing, which suggests that for these two datasets, learn-
ing the task-specific information is more difficult than other
datasets, so more shots are needed.

Ablation study of scaling factor. We show the full com-
parison results across 11 datasets in Table 4. Generally,
our method is not very sensitive to scaling factor α when

α ∈ [0.3, 1], and our TaskRes with even α = 0.1 can also be
a strong performance booster (2.90% accuracy gain). On av-
erage, setting α to 0.5 achieves good performance. However,
the best scaling factor α for various datasets can be different.
For instance, a larger α performs better on Flower102 and
EuroSAT, while a smaller one is better for OxfordPets and
Food101. We then use a learnable parameter (incorporating
a tanh activation) to adaptively determine the value of α. On
average, the learned α attains the most favorable result.



Setting Method ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

1-shot

Regular Base 60.33 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.96
Regular Base + TaskRes 61.43 88.80 83.50 58.77 78.77 74.03 21.20 61.93 50.17 61.27 64.57 64.04

Enhanced Base 61.53 88.00 86.17 57.70 66.73 77.30 19.10 62.23 43.80 44.37 65.23 61.11
Enhanced Base + TaskRes 61.90 88.80 83.60 59.13 79.17 74.03 21.40 62.33 50.20 61.70 64.77 64.28

2-shot

Regular Base 60.33 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.96
Regular Base + TaskRes 62.17 90.13 84.43 62.77 85.63 75.30 23.07 64.33 54.53 65.77 69.10 67.02

Enhanced Base 61.87 89.37 86.93 59.75 68.23 77.53 19.87 63.83 46.53 49.5 67.63 62.82
Enhanced Base + TaskRes 62.63 90.27 84.63 63.70 86.57 75.17 24.13 64.97 55.13 65.83 70.00 67.55

4-shot

Regular Base 60.33 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.96
Regular Base + TaskRes 62.93 90.63 86.27 66.50 89.50 76.23 24.83 66.67 59.50 72.97 69.70 69.61

Enhanced Base 62.43 90.33 87.47 61.87 73.03 77.97 20.93 65.80 49.80 49.43 69.80 64.44
Enhanced Base + TaskRes 63.57 90.97 86.33 67.43 90.20 76.10 25.70 67.27 60.70 73.83 70.93 70.28

8-shot

Regular Base 60.33 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.96
Regular Base + TaskRes 64.03 92.23 87.07 70.57 94.30 76.90 29.50 68.70 64.23 78.07 74.77 72.76

Enhanced Base 63.33 91.60 88.07 66.73 87.67 78.23 23.67 68.07 59.73 67.63 74.27 69.91
Enhanced Base + TaskRes 64.67 92.40 87.17 71.83 94.73 76.40 31.50 68.73 64.77 79.33 75.33 73.35

16-shot

Regular Base 60.33 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.96
Regular Base + TaskRes 64.75 92.90 88.10 74.93 96.10 78.23 33.73 70.30 67.57 82.57 76.87 75.10

Enhanced Base 64.13 92.57 89.07 71.67 92.00 78.70 27.20 70.27 64.13 76.83 77.37 73.09
Enhanced Base + TaskRes 65.73 93.43 87.83 76.83 96.03 77.60 36.30 70.67 67.13 84.03 77.97 75.78

Table 3. Full numerical results of ablation study of our TaskRes effectiveness.

α ImageNet Caltech101 OxfordPets StanfordCars Flowers102 Food101 FGVCAircraft SUN397 DTD EuroSAT UCF101 Average

0 60.33 86.29 85.77 55.61 66.14 77.31 17.28 58.52 42.32 37.56 61.46 58.96
0.1 60.77 87.43 84.93 59.40 70.27 75.60 19.20 59.63 46.53 54.47 62.27 61.86
0.3 61.37 88.63 84.27 59.83 75.47 74.73 20.80 61.83 49.83 60.07 64.53 63.76
0.5 61.43 88.80 83.50 58.77 78.00 74.03 21.20 61.93 50.17 61.27 64.57 63.97
0.7 61.43 88.70 82.80 57.80 78.90 73.17 21.23 61.37 49.57 61.47 63.93 63.67
1 61.23 88.53 81.60 56.23 78.77 71.67 20.83 60.50 49.03 61.77 63.07 63.02

Learned 61.33 88.73 84.00 59.47 77.40 74.40 20.63 61.93 49.90 60.43 65.93 64.01

Table 4. Full numerical results of ablation study of scaling factor α on 1-shot ImageNet.

Setting 1-shot 2-shot 4-shot 8-shot 16-shot

Mean 0.0124 0.0130 0.0118 0.0200 0.0232
Median 0.0474 0.0493 0.0519 0.0672 0.0638

Table 5. Mean and Median of learned task residual magnitudes
across 11 datasets.

2.4. Learned Task Residual

More visualization results. We show more results (1-/2-
/4-/8-shot settings) of the correlation of learned task residual
magnitude and relative transfer difficulty in Figure 1, and the
relation between the learned task residual magnitude and the
number of shots in Table 5. We have the following observa-
tions:

• The magnitudes of the learned task residuals are pos-
itively correlated to the relative transfer difficulty of
CLIP for all shot settings, as shown in Figure 1 in this
appendix and Figure 4 in the main text. This shows that
the proposed task residual can effectively “supplement”
the old knowledge according to the task difficulty.

• With shot increasing, the mean and median of the

learned task residual magnitudes across 11 datasets tend
to increase, which indicates that when more down-
stream task samples are used, more task-specific knowl-
edge can be explored in our method.

• With more shots, task-specific knowledge can be cap-
tured with less variance as the shadows of the lines are
shrinking.

Does TaskRes effectively preserve the pre-trained bound-
ary? To gain deeper insights to the proposed TaskRes,
we compare CoOp [28], CLIP-Adapter [7] and TaskRes
regarding the number of “Wrong2Right” (W2R) images
(i.e., those initially misclassified but later corrected) and
“Right2Wrong” (R2W) images (i.e., those initially correctly
classified but later misclassified). The models are trained
on 4-shot ImageNet and tested on the complete 50k Im-
ageNet test images. The W2R/R2W results for the three
methods are as follows: (CoOp) 4161/4599, (CLIP-Adapter)
3542/2925, and (TaskRes) 3037/1702. This demonstrates
that our TaskRes approach is more effective at preserving the
pre-trained decision boundaries compared to other methods.
Furthermore, we investigate the commonness of the W2R
and R2W images and find that these images tend to occur in
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Figure 1. Relation between the magnitude of learned task residuals and the relative transfer difficulty regarding CLIP with 1-/2-/4-/8-shot
settings (the 16-shot result is in the main text). The shadow indicates the standard deviation regarding random seeds.

the visual concepts sharing the similar high-level semantics,
e.g., upright piano and grand piano.

3. Discussion
Relationship between CLIP-Adapter and our TaskRes.
To make the comparison between CLIP-Adapter [7] and
TaskRes clearer, we here focus on CLIP-Adapter performing
on the text branch of CLIP. Given the pre-trained text em-
beddings t (i.e., the text-based classifier), CLIP-Adapter first
uses two linear layers W1 and W2 (incorporating a ReLU
activation) to transform t, and then adds the transformed fea-
tures to the original embeddings t to obtain a new classifier.
The transformation process (or adapter) can be written as

ϕ(t) = ReLU(tTW1)W2. (1)

We can observe that the transformation in CLIP-Adapter has
no additive bias, which makes the task-specific learning com-
pletely dependent on the old features. In contrast, TaskRes

introduces a learnable bias x (i.e., task residual) that is not
relied on the old features (Eq. 3 in the main text). This al-
lows for more flexibility in learning task-specific knowledge,
leading to better performance.

To further analyze, we extend CLIP-Adapter to two lin-
ear transformation versions: linear adapters with and with-
out learnable bias. Experimental results on 4-shot ImageNet
show that linear adapters, both with and without bias (Acc.:
60.93% and 60.90%, respectively), underperform the orig-
inal nonlinear adapter (Acc.: 61.27%), while the nonlinear
adapter is outperformed by our TaskRes (Acc.: 62.93%).
This indicates that the key for success is not the use of lin-
ear or nonlinear adapters, but the utilization of the prior-
independent learnable parameters, i.e., the learnable param-
eters decoupled from the pre-trained features.

Lastly, although TaskRes could theoretically be consid-
ered as a special case of general adapter-style tuning (with
adapter ϕω parameterized by ω), we believe that the more
simplified design and the much stronger performance exhib-



ited by TaskRes have the potential to inspire the community.

TaskRes versus Tip-Adapter(-F). Tip-Adapter [27], one
of the state-of-the-art methods, has a training-free version
(i.e., Tip-Adapter) and an enhanced version Tip-Adapter-
F which requires training. Our TaskRes has the follow-
ing differences from Tip-Adapter(-F). (i) Different perspec-
tives: Tip-Adapter(-F) is designed to adjust the classifica-
tion results (i.e., logits) produced by the pre-trained classi-
fier via feature retrieval/matching in the training set, while
TaskRes performs on the weights of the classifier by tuning
a prior-independent parameters (i.e., task residual) added to
the pre-trained classifier. Despite the various perspectives,
Tip-Adapter(-F) and our TaskRes are theoretically comple-
mentary. (ii) Different scalability: The number of tun-
able parameters of Tip-Adapter-F linearly increases with
shot number while ours does not increase, which makes
TaskRes more scalable than Tip-Adapter-F. While (training-
free) Tip-Adapter does not need tunable parameters, the in-
ference of an image requires all training sample features. Be-
sides, the performance of Tip-Adapter largely underperforms
Tip-Adapter-F and TaskRes.

Difference between prompt tuning in GLIP and our
TaskRes. The prompt tuning in GLIP [16] performs on the
intermediate features P 0, which are the outputs of the text
encoder and the inputs for subsequent neural networks (NNs)
such as BERT layers [14]. During tuning, GLIP omits the
text encoder, removing the need to run it at every training
step, which is similar to our TaskRes. However, the P 0 is
subsequently fed into the following NNs, and updating P 0

still requires running the NNs (both forward and backward)
each time. As a result, GLIP’s prompt tuning tends to follow
a prompt tuning style.

For which types of tasks does TaskRes yield greater im-
provements? Our TaskRes achieves more significant im-
provement on tasks where more specialized/expertise knowl-
edge is needed, e.g., EuroSAT, DTD and Flowers102. With
1-shot data, TaskRes improves those tasks by 7.85% ∼
23.71%. With 16-shot data, the improvements are enlarged
to 25.25% ∼ 45.01%. This is because our TaskRes can ef-
fectively learn task-specific knowledge.

4. Broader Impact
In this work, we conduct experiments and perform anal-

yses based on CLIP [22]. However, our proposed concept
of learning addictive residual weights for efficient transfer
learning is generic and can be adopted to a wider range
of vision-language models, such as ALIGN [13], Perceiver
IO [12], Flamingo [1], and others. Furthermore, this con-
cept can potentially be extended to tuning vision [5, 8, 18] or
language [14, 17] models.

References
[1] Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine

Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch,
Katie Millican, Malcolm Reynolds, et al. Flamingo: a vi-
sual language model for few-shot learning. arXiv preprint
arXiv:2204.14198, 2022. 5

[2] Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool.
Food-101–mining discriminative components with random
forests. In ECCV, pages 446–461. Springer, 2014. 2

[3] Mircea Cimpoi, Subhransu Maji, Iasonas Kokkinos, Sammy
Mohamed, and Andrea Vedaldi. Describing textures in the
wild. In CVPR, pages 3606–3613, 2014. 2

[4] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li
Fei-Fei. Imagenet: A large-scale hierarchical image database.
In CVPR, pages 248–255. Ieee, 2009. 2

[5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov,
Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner,
Mostafa Dehghani, Matthias Minderer, Georg Heigold, Syl-
vain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is
worth 16x16 words: Transformers for image recognition at
scale. In ICLR, 2021. 5

[6] Li Fei-Fei, Rob Fergus, and Pietro Perona. Learning gener-
ative visual models from few training examples: An incre-
mental bayesian approach tested on 101 object categories. In
CVPRW, pages 178–178. IEEE, 2004. 1, 2

[7] Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao
Fang, Yongfeng Zhang, Hongsheng Li, and Yu Qiao. Clip-
adapter: Better vision-language models with feature adapters.
arXiv preprint arXiv:2110.04544, 2021. 1, 2, 3, 4

[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.
Deep residual learning for image recognition. In CVPR, pages
770–778, 2016. 5

[9] Patrick Helber, Benjamin Bischke, Andreas Dengel, and
Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE
Journal of Selected Topics in Applied Earth Observations and
Remote Sensing, 12(7):2217–2226, 2019. 2

[10] Dan Hendrycks, Steven Basart, Norman Mu, Saurav Kada-
vath, Frank Wang, Evan Dorundo, Rahul Desai, Tyler Zhu,
Samyak Parajuli, Mike Guo, et al. The many faces of robust-
ness: A critical analysis of out-of-distribution generalization.
In ICCV, pages 8340–8349, 2021. 2

[11] Dan Hendrycks, Kevin Zhao, Steven Basart, Jacob Steinhardt,
and Dawn Song. Natural adversarial examples. In CVPR,
pages 15262–15271, 2021. 2

[12] Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac,
Carl Doersch, Catalin Ionescu, David Ding, Skanda Kop-
pula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier J
Henaff, Matthew Botvinick, Andrew Zisserman, Oriol
Vinyals, and Joao Carreira. Perceiver IO: A general archi-
tecture for structured inputs & outputs. In ICLR, 2022. 5

[13] Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh,
Hieu Pham, Quoc Le, Yun-Hsuan Sung, Zhen Li, and Tom
Duerig. Scaling up visual and vision-language representation
learning with noisy text supervision. In ICML, pages 4904–
4916. PMLR, 2021. 5



[14] Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. Bert: Pre-training of deep bidirectional transform-
ers for language understanding. In NAACL-HLT, pages 4171–
4186, 2019. 5

[15] Jonathan Krause, Michael Stark, Jia Deng, and Li Fei-Fei. 3d
object representations for fine-grained categorization. In IC-
CVW, pages 554–561, 2013. 2

[16] Liunian Harold Li, Pengchuan Zhang, Haotian Zhang, Jianwei
Yang, Chunyuan Li, Yiwu Zhong, Lijuan Wang, Lu Yuan, Lei
Zhang, Jenq-Neng Hwang, et al. Grounded language-image
pre-training. In CVPR, pages 10965–10975, 2022. 5

[17] Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar
Joshi, Danqi Chen, Omer Levy, Mike Lewis, Luke Zettle-
moyer, and Veselin Stoyanov. Roberta: A robustly optimized
bert pretraining approach. arXiv preprint arXiv:1907.11692,
2019. 5

[18] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng
Zhang, Stephen Lin, and Baining Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In
CVPR, pages 10012–10022, 2021. 5

[19] Subhransu Maji, Esa Rahtu, Juho Kannala, Matthew
Blaschko, and Andrea Vedaldi. Fine-grained visual classifi-
cation of aircraft. arXiv preprint arXiv:1306.5151, 2013. 2

[20] Maria-Elena Nilsback and Andrew Zisserman. Automated
flower classification over a large number of classes. In IC-
CVGIP, pages 722–729. IEEE, 2008. 2

[21] Omkar M Parkhi, Andrea Vedaldi, Andrew Zisserman, and
CV Jawahar. Cats and dogs. In CVPR, pages 3498–3505.
IEEE, 2012. 2

[22] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning
transferable visual models from natural language supervision.
In ICML, pages 8748–8763. PMLR, 2021. 1, 2, 5

[23] Benjamin Recht, Rebecca Roelofs, Ludwig Schmidt, and
Vaishaal Shankar. Do imagenet classifiers generalize to im-
agenet? In ICML, pages 5389–5400. PMLR, 2019. 2

[24] Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
Ucf101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 2

[25] Haohan Wang, Songwei Ge, Zachary Lipton, and Eric P Xing.
Learning robust global representations by penalizing local
predictive power. NeurIPS, 32, 2019. 2

[26] Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva,
and Antonio Torralba. Sun database: Large-scale scene recog-
nition from abbey to zoo. In 2010 IEEE computer society
conference on computer vision and pattern recognition, pages
3485–3492. IEEE, 2010. 2

[27] Renrui Zhang, Zhang Wei, Rongyao Fang, Peng Gao, Kun-
chang Li, Jifeng Dai, Yu Qiao, and Hongsheng Li. Tip-
adapter: Training-free adaption of clip for few-shot classifi-
cation. In ECCV, 2022. 1, 2, 5

[28] Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei
Liu. Learning to prompt for vision-language models. IJCV,
130(9):2337–2348, 2022. 1, 2, 3


	. Summary of Datasets
	. More Experimental Results and Analyses
	. Few-Shot Learning
	. Training Efficiency
	. Ablation Study
	. Learned Task Residual

	. Discussion
	. Broader Impact

