
A. Appendix
A.1. Dataset Details

We provide the abbreviation and full name for each dis-
ease from Pancreatic Tumors and Liver Tumors in Tabs. A1
and A2, respectively. Meanwhile, we report their incidence
count in our datasets.

We determine the data splitting of known (inliers) and
unknown classes (outliers) according to the real-world med-
ical scenario and previous clinical studies [2, 8]. For Pan-
creatic Tumors, we assign seven common pancreatic dis-
eases (PDAC, PNET, SPT, IPMN, MCN, CP, and SCN) as
inliers, and allocate two peri-pancreatic diseases (AC, DC)
and “other” as outliers. The two peri-pancreatic diseases
(AC, DC) are relatively difficult to distinguish from PDACs
by radiologists, but clinical studies of pancreatic lesion di-
agnosis [2, 8] did not include them because they are not in-
side the pancreas. Thus we regard them as OOD in our
model. For Liver Tumors, we assign five common liver tu-
mors [10] (HCC, ICC, metastasis, hemangiomas, and cyst)
as inliers, and allocate hepatoblastoma, FNH, and “other”
as outliers, due to their low incidental rate.

Note that “other” class represents rare neoplasms or tu-
mors in the real-world dataset, which reflects the long-tailed
distribution of real-world disease incidence. Since these
rare diseases are individually infrequent, it is impossible to
collect them completely. Therefore, we address the thorny
problem by OOD detection and localization.

Abbr. Full name Count
PDAC Pancreatic ductal adenocarcinoma 366
IPMN Intraductal papillary mucinous neoplasms 61
PNET Pancreatic neuroendocrine tumor 35
SCN Serous cystic neoplasms 46
CP Chronic pancreatitis 43
SPT Solid pseudopapillary tumor 32
MCN Mucinous cystadenoma 7
AC Ampullary cancer 46
DC Bile duct cancer 12
“other” Other rare neoplasms 13

Table A1. Dataset details of real-world Pancreatic Tumors. This
full-spectrum dataset consists of ten pancreatic diseases, among
which we assign the top seven as inlier tumors and the bottom
three as outlier tumors, based on the real-world medical scenario
and previous clinical studies [2, 8].

A.2. Qualitative Results on Liver Tumors

For qualitative analysis on Liver Tumors, we present vi-
sual examples of anomaly score map for OOD localization
in Fig. A1. This shows that our approach achieves a high
anomaly score in the OOD pixels (outlier tumor), while
a low anomaly score in the in-distribution pixels (organ),
compared with other methods.

Abbr. Full name Count
HCC Hepatocellular carcinoma 162
ICC Intrahepatic cholangiocarcinoma 51
Meta. Metastasis 97
Heman. Hemangiomas 75
Cyst Cyst 146
Hepato. Hepatoblastoma 17
FNH Focal nodular hyperplasia 27
“other” Other rare tumors 60

Table A2. Dataset details of real-world Liver Tumors. This full-
spectrum dataset includes seven liver tumors, among which we
assign the top five as inlier tumors and the bottom three as outlier
tumors, according to the real-world medical scenario and previous
clinical studies [10].

A.3. Baselines for Inlier Segmentation

Comparison with Other Baselines. For a fair compar-
ison with our method, we train UNet [7], UNet++ [12],
TransUNet [1] based on the framework of nnUNet [5].
TransUNet adopts transformer modules as pixel encoder,
whereas our method uses CNN as the pixel-level backbone
and leverages stand-alone transformer modules to interact
with it. As presented in Tab. A3, our method shows supe-
riority on inlier segmentation compared with strong base-
lines, including nnUNet [5] and (nn)TransUNet [1]. This
demonstrates that the distinctive architecture of our newly
designed mask transformers leads to better performance on
real-world medical image segmentation.

We also train Swin UNETR [9] using their officially
released code and pre-trained model. We find that Swin
UNETR [9] could not converge to reasonable tumor seg-
mentations on Pancreatic Tumors, that might be due to
its difficulity in identifying subtle tumor differences with-
out sufficient data samples. Meanwhile, Swin UNETR [9]
achieves Dice scores of 50.48% (HCC), 32.62% (ICC),
36.06% (Meta.), 71.82% (Heman.) and 15.30% (Cyst) on
Liver Tumors, resulting in the average score of 41.26%.

A.4. Statistical Analysis

The Wilcoxon signed-rank test shows our method shows
significant improvement to the second-best approaches on
all metrics with p < 0.01, as presented in Tab. A4.

A.5. Hyper-parameter Selection.
We discuss in detail the key hyper-parameter of our

method, i.e., (N1, N2, N3), for controlling the query dis-
tribution, in Tab. 3 and Sec. 4.4. Our method shows ro-
bustness to different settings of query distribution. And an-
other important hyper-parameter is the number of queries.
It should be redundantly larger than the possible/useful
classes in the data, which depends heavily on the data and
the task. For other hyper-parameters on data augmenta-
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Figure A1. Visualization results of anomaly score map for OOD localization on Liver Tumors: (a) 2D slices of the CT image, (b) ground
truth annotation (red: liver, blue: outlier tumor), (c) MSP [4], (d) MaxLogit [3], (e) SML [6] and (f) Ours. The grayscale level indicates
the anomaly score. Our method reaches a high anomaly score in the OOD pixels (outlier tumor), while a low anomaly score in the in-
distribution pixels (organ).

Pancreatic % Liver %
Methods PDAC IPMN PNET SCN CP SPT MCN Avg. HCC ICC Meta. Heman. Cyst Avg.
UNet [7] 63.96 21.07 21.72 30.70 17.88 33.96 18.10 29.62 61.59 28.76 43.77 65.01 37.39 47.30
UNet++ [12] 63.43 22.85 14.52 25.09 15.02 21.36 10.07 24.62 56.51 29.13 36.88 56.74 46.60 45.17
TransUNet [1] 64.91 31.18 26.78 38.96 22.39 29.87 30.27 34.91 52.26 25.50 42.31 70.90 47.52 47.70
nnUNet [5] 65.65 27.60 32.59 36.46 23.33 31.73 30.96 35.47 57.22 28.16 52.81 77.55 46.49 52.45
Ours 67.91 46.92 32.07 42.51 31.36 42.67 28.97 41.77 67.61 30.78 60.40 77.07 47.61 56.69

Table A3. Inlier segmentation Dice scores (%) on val set of Pancreatic Tumors and Liver Tumors (all methods report results with final
checkpoint). Our method notably outperforms all baselines for the task of inlier tumor segmentation.

p AUROC AUPR FPR95 DSC
Pancreas 4.4×10−6 2.0×10−6 2.7×10−7 2.0×10−6

Liver 2.3×10−3 7.0×10−3 6.7×10−3 2.8×10−3

Table A4. Results of Wilcoxon signed-rank test versus the second-
best approaches on all metrics.

tion, pre-processing, network architecture, and optimiza-
tion, we follow the original settings in nnUNet [5] and
KMax-Deeplab [11].
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