
A. Appendix
A.1. Attack Effects in ViTs

A.1.1 Multi-target Attack in ViTs

To further verify the performance of BadViT, we conduct
multi-target backdoor attacks in ViTs. We train adversarial
patch-wise triggers at index 0, 95, and 195 respectively in
DeiT-T and use them for multi-target backdoor attacks, cor-
responding to the target categories “bullfrog”, “husky” re-
spectively, and “paper towel”. The relevant results are given
in Tab. 8. We observe that BA of BadViT is 0.42% better
than CA under multi-target attack, and ASRs for three tar-
get classes are 99.98%, 99.97%, and 99.84%, respectively.
This proves that our BadViT also has satisfying effective-
ness under multi-target backdoor attacks.

Table 8. Evaluations of BAs (%) and ASRs (%) under multi-target
BadViT.

CA BA ASR

Bullfrog
72.02 72.44

99.98
Husky 99.97

Paper Towel 99.84

A.1.2 Visual Effects of BadViT

We visualize the attack effect of BadViT and its invisible
variants, as shown in Fig. 6, including the original benign
image, images pasting with the adversarial patch-wise trig-
ger in vanilla BadViT (row 2), optimized triggers under linf
constraint (rows 3 ∼ 5) and l2 constraint (rows 6 ∼ 8). We
have the following findings: 1) the adversarial patch-wise
trigger under our vanilla BadViT is the most visually ob-
vious and its contour covers the entire path; 2) when ϵ is
large (e.g. ϵ = 64/255 or 2.0) under the constraints of
linf and l2, the visibility is higher on images with a pure
background (see the second and third images of rows 3 and
5), while is tiny in images with more complex backgrounds
(see the first images of rows 3 and 5); 3) as ϵ decreases, the
trigger becomes more hidden, especially when ϵ = 4/255
or 0.5, the trigger seems almost invisible regardless of if the
background is pure.

We also visualize the transferability of BadViT on three
downstream datasets, and we can observe from Fig. 5 that
our adversarial patch-wise trigger can also well shift the
model attention to the patch where the trigger is located.

A.1.3 Attack Effects in More Models

In order to verify the applicability of BadViT in the ViTs
family, we evaluate the attack effect of BadViT in T2T-ViT-
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Figure 5. Visualization of the transferability on BadViT with three
downstream datasets.

Table 9. Results (%) of BadViT and its variants on different mod-
els.

w/o Vanilla BadViT (l2) BadViT (linf)
CA BA ASR BA ASR BA ASR

T2T-ViT 71.46 72.17 100 72.21 99.99 72.18 99.99
CaiT 78.32 78.27 100 78.20 99.97 78.15 99.98

ConViT 72.39 72.71 100 73.29 99.95 73.21 99.98

7 [67], CaiT-XXS24 [54], and ConViT-tiny [19]. Specifi-
cally, we evaluate our vanilla BadViT as well as two invisi-
ble variants (l2 with ϵ = 2.0 and linf with ϵ = 64/255) un-
der the baseline setting. Results are listed in Tab. 9, which
show that our proposed attack remains highly effective even
with these different ViT models.

A.2. Resistance Effects of Existing Defenses

A.2.1 Resistance to Neural Cleanse

Setup. We use Neural Cleanse [59] to test the effect of
BadViT. We reverse-generate the trigger and mask of the
backdoor attack as follows:

min
m′,t′

Ltr

(
F̂ (µ(x, t′,m′)) , y∗

)
+ λ∥m∥1, ∀x ∈ Dtest

where m′ and t′ represent the generated mask and trigger,
respectively, and λ is set to 0.01 in our experiment. Adam
optimizer is used to solve this multi-objective optimization
problem, so that the generated mask and trigger superim-
posed on any image can be classified as the target class y∗

by F̂(·), and ensure that the l1 norm of the generated mask
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Figure 6. Visualization of attack effects on BadViT as well as several invisible variants. Row 1 is the benign input, row 2 represents the
backdoor input after the vanilla BadViT superimposes the trigger, rows 3 ∼ 5 and rows 6 ∼ 8 show the visual effects under the constraints
of linf and l2 respectively.



Table 10. Evaluations of Neural Cleanse in ViTs and CNNs, where the anomaly index > 2 represents the model is infected, the label index
is with the smallest mask l1 norm, and the l1 norm of the mask reflects the size of the generated mask.

Settings → DeiT-T ResNet-18
White Patch Adversarial Patch White Patch

Anomaly Index 2.74 2.56 4.63
Label Index 30 20 30

Mask l1 Norm 230.77 11.12 244.41

is sufficiently small. Under the black-box setting, we take
the first 40 classes of the test dataset as target categories y∗

respectively for reverse engineering, and each class is opti-
mized with 100 epochs.

Observations. The evaluation of Neural Cleanse in ViTs
and CNNs against different backdoor attack settings is
shown in Tab. 10. We have the following findings: 1) al-
though anomaly index for various settings is greater than 2
in CNNs and ViTs, the model anomaly index under white
patch setting in ResNet-18 reaches 4.63, which is higher
than ViTs; 2) despite the backdoor of the model is detected
in all three cases, the target class of ViTs is falsely detected
as 20 (namely water ouzel) with l1 norm of 11.12 under our
BadViT, which is far less the value 331.95 corresponding to
the correct target class.

The visualization of masks, triggers and their fusion gen-
erated in ResNet-18 and DeiT-T are shown in Fig. 7. We
can observe: 1) the mask and trigger generated by backdoor
CNNs and backdoor ViTs under the white patch trigger can
basically restore our attack settings; 2) under our BadViT
attack, although the masks generated for the target label of
the backdoor ViTs are also patch -wise, the location (in-
dex 42) is different from our attack setting (index 0), which
shows that ViTs is less robust to backdoor attacks based on
patch-wise triggers, i.e. more than one trigger setting of
backdoor attack for the attacker can be realized; 3) masks
generated for the target label and non-target label in ViTs
can be seen obviously based on patches, and the generated
trigger is also with the basic outline of the patch. While
in CNNs, masks and triggers generated for non-target la-
bels are of arbitrary shape (non-patch based). Our reverse-
engineered defense evaluations verify that ViTs are really
weak robust against patch-wise backdoor attacks.

A.2.2 Resistance to Fine-Pruning

We benchmark the effectiveness of the pruning-based ap-
proach on BadViT. First, we evaluate the characteristics of
DeiT-T under our BadViT to prune neurons in different pro-
portions in the fully connected (FC) layers of different lay-
ers, and give results in Tab. 11. Obviously, the effect of
pruning is gradually obvious with the increase of pruned

layers and pruned neurons. When the number of pruned
layers of the model is lower than 5, pruning only affects
the accuracy of the model on the benign input, especially
when the last 5 layers are pruned with a ratio of 0.9, BA
of the model drops off a cliff to 46.38%. However, insuf-
ficient pruned neurons have no effect on ASR, which even
maintains 100% when all twelve layers are pruned at a ratio
of 0.5, and reaches 92.71% when the last seven layers are
pruned at a ratio of 0.9. It is not until we prune the last nine
layers with a ratio of 0.9 that ASR is reduced to 84.87%,
but BA at this time is as low as 14.01%, which means that
the model has failed. In extreme cases, we prune all layers
with a ratio of 0.9. In this case, the backdoor in the model
is completely removed, whereas BA is only 1.48%.

In order to further verify the benefits of the ratio of neu-
ron pruning, we choose to prune all 12 layers of DeiT-T
with different ratios, and the relevant results are shown in
Tab. 12. It can be found that the increase of pruning ratio
will lead to the continuous decrease of BA. As for ASR,
it begins to decline significantly when the pruning ratio is
higher than 0.7, especially it is higher than 0.75. For exam-
ple, when we increase the pruning ratio from 0.76 to 0.77,
ASR decreases from 54.26% to 19.47%, while the BA at
this time only decreases slightly by 1.68%, which shows
that most of the backdoor neurons have been pruned [33].

Accordingly, we choose to perform fine-pruning on
DeiT-T with twelve layers pruned with a ratio of 0.77, and
fine-tune for 20 epochs with a learning rate of 10−5, and the
results are shown in Tab. 13. It can be seen that although BA
of the pruned backdoor model has dropped to 16.78%, after
fine-tuning for 2 epochs, it is improved to 64.48%, while the
corresponding ASR dropped from 19.47% to 3.16%. Fine-
tuning will continuously improve BA with a concomitant
decrease in ASR, but until the 14-th epoch, the peak of BA
(68.67%) is still lower than the CA of the benign model. It
is worth noting that the BA and ASR of the model both drop
to 0 when fine-tuning is performed for 16 epochs.



Table 11. Effects of different pruning layers and ratios on DeiT-T under BadViT. Note that we count the number of pruned layers sequen-
tially from the last layer of DeiT-T, and test the corresponding BA (%) and ASR (%).

Layers 1/12 3/12 5/12 7/12 9/12 12/12

Ratios 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9 0.5 0.9

BA 72.13 71.30 72.00 68.26 71.34 46.38 70.19 23.82 68.94 14.01 66.68 1.48
ASR 100.00 100.00 100.00 100.00 100.00 100.00 100.00 92.71 100.00 84.87 100.00 0.00

Table 12. Benchmarks of BA (%) and ASR (%) pruned at different ratios for all twelve layers of DeiT.

Pruning Ratios 0.9 0.8 0.78 0.77 0.76 0.75 0.7 0.6

BA 1.48 10.95 13.92 16.78 18.46 21.97 38.35 58.72
ASR 0.00 0.15 13.77 19.47 54.26 80.61 96.67 99.99

Table 13. Benchmarks of BA (%) and ASR (%) of different epochs under fine-pruning.

Epoch 2 4 6 8 10 12 14 16 18

BA 64.48 66.74 67.59 67.93 68.46 68.41 68.67 0.10 0.10
ASR 3.16 0.65 0.34 0.26 0.19 0.18 0.17 0.00 0.00
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Figure 7. Visualization of masks, triggers, and their fusions generated by Neural Cleanse. Rows 1 ∼ 2 is the result of ResNet-18 under the
setting of white patch attack, rows 3 ∼ 4 show the result of DeiT-T under the setting of white patch attack, and rows 5 ∼ 6 represent our
results of DeiT-T under BadViT attack. Corresponding inverse results for the target label (30) and non-target label (20) in each case are
shown.
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