
Connecting the Dots: Floorplan Reconstruction Using Two-Level Queries
Supplementary Material

Yuanwen Yue1 Theodora Kontogianni2 Konrad Schindler1,2 Francis Engelmann2

1Photogrammetry and Remote Sensing, ETH Zurich 2ETH AI Center, ETH Zurich

In the supplementary material, we first provide addi-
tional ablation studies on the attention design and numbers
of the two-level queries (Sec. A). Then we describe an alter-
native ‘tight’ room layout used by some baselines and report
the scores of our model trained with this layout (Sec. B).We
also provide further implementation details and more results
on semantically-rich floorplans (Sec. C). Finally, we pro-
vide details for running competing methods Floor-SP [2]
and HEAT [3], as well as a learning-free baseline on the
SceneCAD dataset [1] (Sec. D).

A. Additional Ablation Studies

A.1. Self-attention of the two-level queries

In the main paper, the Transformer decoder performs
self-attention on all vertex-level queries regardless of the
polygon they belong to (Tab. 8, 2⃝). Alternatively, in this
experiment, we restrict the vertex-level queries to attend
only to vertices within the same polygon. Implementation-
wise, we add an attention mask to prevent attention from
vertex-level queries in one polygon to vertex-level queries
of another polygon. We find that this restricted form of at-
tention leads to an overall reduced performance (Tab. 8, 1⃝).
We conclude that the self-attention between vertices across
all polygons plays an important role for structured reason-
ing. In particular, the attention mechanism across multiple
polygons seems to help fine-tune the vertex positions of one
polygon by attending to the vertex positions of its neighbor-
ing polygons.

Room Corner Angle

Settings Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

1⃝ Intra-Poly. Attn. 95.5 94.2 94.8 90.3 81.9 85.9 87.2 79.1 83.0
2⃝ Inter-Poly. Attn. 96.5 95.3 95.9 91.2 82.8 86.8 88.3 80.3 84.1

Table 8. Impact of self-attention design on Structured3D val.
Using self-attention only between the vertices of a single polygon
leads to a drop in the F1 score, showing the usefulness of extending
the effect of vertices across all polygons.

Settings Room Corner Angle

M N t (ms) Prec. Rec. Prec. Rec. Prec. Rec.

15 30 8.4 95.7 94.5 90.2 82.2 86.5 79.0
20 40 10.8 96.3 95.0 90.8 82.7 87.8 80.0
20 50 12.8 96.2 94.6 90.5 82.1 87.6 79.5
30 40 13.9 96.8 95.5 91.1 82.7 88.1 80.1
30 50 16.8 96.0 94.8 90.6 82.4 87.5 79.7

Table 9. Analysis on number of queries. The reported scores are
on Structured3D validation set averaged over three runs.

A.2. Number of queries

We study the effect of different numbers of queries in
each level in Tab. 9. The number of queries is based on: 1)
the maximum number of rooms and the maximum number
of corners in each room in the training dataset. 2) com-
putational efficiency. Although the number of queries em-
pirically has a small impact on reconstruction quality, the
results highlight the robustness of our model towards fewer
queries and justify the associated gain in runtime (16 ms →
8 ms), especially since we aim to be much faster than prior
work. We chose M = 20 and N = 40 as a good compro-
mise between model performance, inference time, as well
as training time.

B. Tight Room Layouts
We represent floorplans as a set of closed polygons,

which is consistent with the groundtruth annotations in

Room Corner Angle

Method Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

Floor-SP [2] 89. 88. 88. 81. 73. 76. 80. 72. 75.
MonteFloor [6] 95.6 94.4 95.0 88.5 77.2 82.5 86.3 75.4 80.5

HAWP [8] 77.7 87.6 82.3 65.8 77.0 70.9 59.9 69.7 64.4
LETR [7] 94.5 90.0 92.2 79.7 78.2 78.9 72.5 71.3 71.9
HEAT [3] 96.9 94.0 95.4 81.7 83.2 82.5 77.6 79.0 78.3

RoomFormer (Ours) 97.9 96.7 97.3 89.1 85.3 87.2 83.0 79.5 81.2
RoomFormer∗ (Ours) 97.2 96.2 96.7 91.6 83.4 87.3 88.3 80.5 84.2

Table 10. Foorplan reconstruction scores on Structured3D
test. For a complete and fair comparison, we complement Tab. 1
from the main paper with the result of our model trained on tight
room layouts, indicated by ∗. Cyan and orange mark the two top
scores.
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Structured3D [9]. The advantage of this representation is
that the thickness of inner walls is implicitly provided by the
distance between neighboring room polygons (see Fig. 8,
right column). Alternatively, HEAT [3] predict floorplans as
planar graphs, which means that the walls of adjacent rooms
are represented by a single shared edge in the graph. In par-
ticular, this simpler graph representation can approximate
the true floorplan only up to the thickness of the walls. Fur-
thermore, to train HEAT, an additional pre-processing step
is required which merges the groundtruth edges of neigh-
boring polygons into a single shared edge. It is impor-
tant to note that the evaluation still runs on the unmodi-
fied groundtruth floorplans. Therefore, during evaluation,
HEAT performs a post-processing step to obtain a set of
closed room polygons from the estimated planar graph.

To show that the improved performance of our model is
independent of the layout representation, we train a model
on the same ‘tight’ room layout representation as HEAT
and report the scores in Tab. 10 marked with a star (∗).
Note again that all models are evaluated on the same non-
processed groundtruth annotations of Structured3D [9]. We
observe that the room metrics of the model trained on tight
room layouts drop a bit compared with our original model,
while still outperforming all other methods. The drop in
scores is not surprising since the modified training data is
only an approximation of the original groundtruth used for
evaluation. Furthermore, the room metrics penalize over-
lap between rooms [6]. Results from tight room layouts are
more likely to overlap, which can potentially degrade the
room metrics. Interestingly, the angle metrics improve, es-
pecially when it comes to angle precision, which already
outperforms MonteFloor. In the tight room layout, we en-
courage corners in adjacent walls to share the same location
and have exactly complementary angles. This implicit con-
straint might help the model to reason about angle relation-
ships, thus benefiting the angle metrics. More qualitative
results can be found in Fig. 8.

C. Semantically-Rich Floorplan Models
We proposed three model variants for reconstructing

semantically-rich floorplans: (1) SD-TQ: single decoder
with two-level queries. (2) TD-TQ: two decoders with two-
level queries. (3) TD-SQ: two decoders with single-level
queries in the line decoder. Here, we explain additional im-
plementation details along with more results. We also de-
scribe our heuristic for drawing the door arcs based on the
width of the door segments.

C.1. Implementation details

We describe the implementation details of the three
model variants to extend our RoomFormer architecture to
predict room types, doors and windows (Fig. 4, main pa-
per).

SD-TQ. Single decoder with two-level queries. We take
our original architecture and increase the number of room-
level queries M from 20 to 70 while keeping the number of
corner-level queries N unchanged. In addition, since there
is no need to rasterize lines, we remove the rasterization loss
Lras. We predict all the semantic types (room types, door
or window) from the aggregated room-level features of the
output embedding of the polygon decoder, as described in
Sec. 3.5 of the main paper.

TD-TQ. Two decoders with two-level queries. We add
a separate line decoder with the same architecture as the
polygon decoder. In the line decoder, we set the number
of line-level queries to 50 and the number of corner-level
queries to 2. We remove the rasterization loss Lras term
for the line decoder (still used in the polygon decoder).
Room types are predicted from the aggregated room-level
features of the output embedding of the polygon decoder,
while door/window types are predicted from the aggregated
line-level features of the output embedding of the line de-
coder.

TD-SQ. Two decoders with single-level queries. We add
a separate line decoder that takes single-level queries, and
predicts the coordinates of the two endpoints of each line
directly, similar to [7]. We set the number of single-level
queries to 50. Room types are predicted as in TD-TQ.
Door/window types are predicted based on the output em-
bedding of the line decoder.

C.2. Plotting doors

To obtain floorplan illustrations that are closer to actual
floorplans used by architects, we follow the typical notation
and represent doors as arcs. Note that this step is only for
visualization purposes and is not part of the annotations in
the training datasets. In particular, we cannot predict to-
wards which side a door opens and if it is a double door or a
single door. The visualization used in this paper is based on
a heuristic which creates a double door when the predicted
width of the door exceeds a certain threshold. The exact
heuristic is shown in Algorithm 1.

C.3. Additional results

Tab. 11 complements Tab. 4 in the main paper by pro-
viding more detailed scores of the three model variants on
semantically-rich floorplan reconstruction. By comparing
the single-decoder variant (SD-TQ) with the two-decoder
variants (TD-TQ and TD-SQ), we find that separate de-
coders can help improve room type classification. Our
polygon queries are designed for geometries with a vary-
ing number of vertices. Since a line has a fixed number of 2
vertices, the single-level query variant (TD-SQ) works bet-
ter than the two-level query variant (TD-TQ). We provide
more qualitative results in Fig. 9.
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3D Scan MonteFloor [6] HEAT [3] Ours∗ Ours Ground Truth

Figure 8. More qualitative evaluations on Structured3D [9]. Colors are assigned based on room locations, without semantic meaning.
Ours∗ denotes the result of our model trained on tight room layout. (Best viewed in color on a screen and zoomed in.)

Door/Window Room∗ Room Corner Angle

Method Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1

SD-TQ 83.4 79.0 81.1 71.5 70.0 70.7 95.3 93.3 94.3 86.0 81.8 83.9 78.6 74.9 76.7
TD-TQ 82.6 79.1 80.8 71.9 70.9 71.4 94.0 92.8 93.4 84.2 80.0 82.0 75.6 71.9 73.7
TD-SQ 85.6 78.2 81.7 74.8 74.0 74.4 95.4 94.4 94.9 85.8 82.6 84.2 77.3 74.5 75.9

Table 11. Detailed scores of semantically-rich floorplan reconstruction on Structured3D test set [9].
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3D Scan SD-TQ TD-TQ TD-SQ Ground Truth

Figure 9. Additional qualitative results on semantically-rich floorplans. (Best viewed in color on a screen and zoomed in.)
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Algorithm 1 Algorithm for plotting doors as arcs

Input: a set of predicted lines L = {li}
N l

i=1, where li =
((xi

1, y
i
1) , (x

i
2, y

i
2))

Output: plotting of a set of arcs
1: calculate the median length m of all the lines L
2: for li in L do
3: if ∥yi2 − yi1∥ > ∥xi

2 − x
i
1∥ then

4: if yi2 > yi1 then ei1 = (x
i
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i
1) and ei2 = (x
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5: else ei1 = (x
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6: end if
7: if len(li) < 1.5 ×m then draw a quadrant cen-

tered at ei1 with a radius of len(li) from ei2 clockwise
8: else draw two opposite quadrants centered at ei1

and ei2 with a radius of len(li)/2 on the right of
ÐÐ→
ei1e

i
2

9: end if
10: else
11: if xi

2 > x
i
1 then ei1 = (x

i
2, y

i
2) and ei2 = (x

i
1, y

i
1)

12: else ei1 = (x
i
1, y

i
1) and ei2 = (x
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2, y
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2)

13: end if
14: if len(li) < 1.5 ×m then draw a quadrant cen-

tered at ei1 with a radius of len(li) from ei2 counterclock-
wise

15: else draw two opposite quadrants centered at ei1
and ei2 with a radius of len(li)/2 on the left of

ÐÐ→
ei1e

i
2

16: end if
17: end if
18: end for

D. Running Competing Approaches
For comparison on the SceneCAD dataset [1] in the

main paper, we select two representative methods from both
optimization-based and fully-neural categories Floor-SP [2]
and HEAT [3] that offer state-of-the-art results in floorplan
reconstruction and have a public codebase. For a more com-
plete comparison, here we also report the performance of a
heuristic-guided pipeline that is free of any deep learning
components. Here we describe in detail how we adapted
those methods for the SceneCAD dataset [1].

Floor-SP: We used the official implementation with a
change in the sequential room-wise shortest path module.
We project 3D scans into density images of size 256×256
pixels. Unlike Structured3D, the SceneCAD dataset usually
contains only one room per scene, which will result in larger
occupancy pixel areas for a single room. While this does not
cause problems for HEAT and our approach, it can lead to
a large search space for the sequential room-wise shortest
path module in Floor-SP since each room mask contains a
large number of pixels. Using Floor-SP default settings, we
observe the solver cannot find a solution for many scenes
due to the computational complexity of the larger number

Room Corner Angle

Method t(s) IoU Prec. Rec. F1 Prec. Rec. F1

Non-learned 0.22 86.0 66.0 80.8 72.7 45.0 55.2 49.6
Floor-SP [2] 26 91.6 89.4 85.8 87.6 74.3 71.9 73.1
HEAT [3] 0.12 84.9 87.8 79.1 83.2 73.2 67.8 70.4
RoomFormer (Ours) 0.01 91.7 92.5 85.3 88.8 78.0 73.7 75.8

Table 12. Foorplan reconstruction on the SceneCAD
val set [1].

of pixels per room. Therefore, we down-sample the density
map to 64×64 pixels (a similar size with a single room in
the density map of Structured3D) to help reduce the search
space. Please note, we train other modules (room mask ex-
traction and corner/edge detection) on the original density
map without down-sampling.

HEAT: We used the official implementation with a batch
size of 10. We train the model for 400 epochs and found that
longer training times would not help to improve the perfor-
mance further. For the experiments on cross-data general-
ization, we directly load the released official checkpoints
trained on Structured3D and evaluate them on SceneCAD.

Non-learned baseline: We first project the 3D scan along
the vertical axis into an occupancy map of size 256×256
pixels. A pixel is occupied if at least one point is projected
to this pixel. To mitigate the impact of missing scans, we ap-
ply dilation and erosion to fill holes in the occupancy map.
Then we employ a learning-free polygon vectorization al-
gorithm [5] to extract closed polygons from the occupancy
map, finally followed by a Douglas-Peucker algorithm [4]
to remove redundant corners.

We complement Tab. 2 of the main paper with the result
of the non-learned baseline (the 1st row in Tab. 12). We re-
port the running time of the polygon vectorization process.
Surprisingly, the pipeline achieves a room IoU of 86.0 and
a corner recall of 80.8. However, the angle metrics indi-
cate that those polygons usually fail to accurately describe
the geometry of the actual room shapes. This suggests that
the non-learned baseline can only capture the rough shape
of the floorplan compared with methods that utilize deep
learning.
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