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The supplementary material is organized as follows: in
Section A we provide further details on our fine-tuning pro-
cess on the target domain. In Section B we describe in
depth the pipeline for attributes extraction and matching.
In Section C we provide the pseudo-code for the most rele-
vant routines of our AutoLabel framework. In Section D
we provide useful statistics of our considered benchmarks.
In Section E we provide a more detailed description of the
baseline methods included in our experimental evaluation.
In Section F we report additional results and ablation study
experiments.

A. Target fine-tuning
In this Section we provide details of how the target

pseudo-labelling and consequent fine-tuning steps are car-
ried out in our AutoLabel framework. ActionCLIP [8]
performs inference by projecting the test video to the CLIP
space, and assigning the label corresponding to the textual
prompts whose embedding is the most similar to the video
embedding. In order to fine-tune on the target domain, we
freeze the network and apply such inference step to the un-
labelled target training batch, obtaining a pseudo-label for
each target instance. After that, we filter out all those pre-
dictions that are not included in the top-k% most confident
ones for that specific label. In order to measure the confi-
dence of a given pseudo-label, we consider the similarity in
the CLIP space with the closest set of textual prompts. On
the instances of the target training batch passing the filtering
process, we simply carry out a standard supervised training
step with the ActionCLIP loss.

B. Attributes extraction and matching
In this Section we detail the implementation of the at-

tributes extraction and matching pipeline mentioned in the
main paper. In particular, we provide the formal details of
the tfidf and sim(·, ·) functions from Sections 3.2.2 and
3.2.3, respectively. As mentioned in the paper, the off-the-
shelf image captioning model ViLT [6] extracts a set of at-
tributes from a selection of frames in a given input video
sequence. For our experiments, we set up the model in or-
der to extract 5 attributes for each of 5 frames out of each
video sequence. After that, we select the 5 most frequent at-

tributes across the frame selection in order to build the final
set of attributes for the sequence.

B.1. tfidf function

After the extraction carried out by ViLT, we are provided
with a set of attributes for each video sequence. The follow-
ing steps demand the extraction of a set of attributes for a
given class (source domain) and for a given video cluster
(target domain). In both cases the pipeline is the same, and
we only change the set of instances given as input. Given
the sets of instances, we apply the tfidf module, which is
implemented as follows. We firstly compute the most fre-
quent attributes across all the input instances; at this point,
we compute the Term-frequency and Inverse Document Fre-
quency (tf-idf) [4, 7] score of each attribute. Given a set of
text documents and the corresponding token vocabulary, the
tf-idf value of a given token with respect of a given docu-
ment is designed in order to quantify how relevant that to-
ken is for that document. Formally, this score is defined
as the product of two different statistics, namely Term fre-
quency (tf) and Inverse document frequency (idf), defined as
follows:

tf(t, d) =
ft,d∑

t′∈d ft′,d
(1)

idf(t,D) = log
N

|{d ∈ D : t ∈ d}
(2)

tfidf(t, d,D) = tf(t, d) · idf(t,D) (3)

where ft,d is the raw count of of term t in the document
d, i.e., the number of occurrences of term t in d. N is the
total number of documents considered, and D is the set of
documents.

The conceptual intuition behind this score lies in the fact
that a given term is most likely to be relevant for a given
document if (i) it occurs often in the document and (ii) it
occurs seldom in any other document. In our case, we con-
sider one document for each class (N = K, source domain)
or for each cluster (N = C, target domain): each document
comprises the most common attributes across that specific
set of instances. Consequently, by thresholding the tf-idf of
each attribute, we end up with the most relevant terms for



each source class and for each target cluster. We set this
threshold to 0.5 for all experiments.

B.2. Matching

Once provided with a set of relevant terms for each
source class and for each target cluster, we carry out the
matching step as described in the main document. This step
relies on the sim(·, ·) function, which takes as input two
sets of attributes, ordered by confidence during the extrac-
tion, and computes a similarity score. Given as attributes in
the source set , this function defines as weights in decreas-
ing order normalized between 0 and 1. For each common
occurrences, it adds up to the score value (initially 0) the
weight corresponding the absolute distance between the po-
sitions of such occurrences in the two input sets. Informally,
the intuition behind this score consists in the idea of taking
into account both the number of co-occurrences of attributes
between the two sets and their position, the latter account-
ing for their frequency in the corresponding input set. At
the end of this loop, the score is again normalized and used
to fill the S matrix mentioned in Sec. 3.2.3.

C. Pseudo-code
In this Section we provide the pseudo-code for the dif-

ferent modules of our framework. In particular, Alg. 1
presents the attribute extraction step presented in Section
3.2.1 of the main document; Alg. 2 presents the discovery
process of candidate target classes presented in 3.2.2, Alg.
3 details the similarity function sim(·, ·) referenced in 3.2.3
and Alg. 4 provides the pipeline for the attribute matching
process described in 3.2.3.

D. Datasets statistics
In this Section we provide detailed statistics about the

benchmarks considered in our experimental evaluation. In
particular, we report for each dataset in Table 1 the num-
ber of shared and private classes and the number of source
training, target training and test samples.

E. Baseline details
In this Section we provide additional details about the

baseline methods we implemented autonomously.

CEVT-CLIP [1] This baseline has been implemented by
simply modifying the original code provided by the authors
in [1], replacing the ResNet [5] backbone with the Action-
CLIP [8] encoder.

ActionCLIP [8] This baseline is obtained by modifying
our own framework, itself based on the ActionCLIP archi-
tecture, in order to apply a different open-set rejection pro-
tocol. In order to make the choice of whether to assign a

Algorithm 1: Attribute extraction
Input: Source video sequences XS,

Target video sequences XT, Prompt z,
ViLT model ViLT(),
Number of selected frames F , Number of
selected attributes k, tf-idf module tfidf

Output: Set of source attributes Λ̄lS ,
Set of target attributes Λ̄T

for X ∈ {XS,XT}, d ∈ {lS, T} do
for i← 0 to |X| do

x← X[i]
video attributes← [ ]
for j ∈ F do
A(xj)← ViLT(xj , z)
Append attributes in A(xj) to
video attributes

end
end
mc← argtopk(video attributes)
filtered← tfidf(mc)
Add attributes in filtered to Λ̄d

end

Algorithm 2: Discovering candidate classes
Input: Target video sequences XT, Video encoder

GV , Number of target clusters |C|,
Set of target attributes Λ̄T, Clustering
function Cluster

Output: Target candidate labels Ycand,T

vT ← GV (X
T)

C ← Cluster(vT)
Ycand,T ← Ø
for c← 0 to |C| do

Λ̄c,T ←
Attributes for videos belonging to cluster c
lcand,T
c = Λ̄c,T

1 || . . . ||Λ̄
c,T
t

Add lcand,T
c to Ycand,T

end

known or unknown label to a test target sample, this method
simply thresholds the similarity, in the CLIP space, between
the video embedding and the closest set of label prompts.
This threshold has been set to 0.9 for HMDB↔UCF and to
0.5 for Epic-Kitchens.

ActionCLIP-ZOC [2] This baseline is implemented as
a modification of the open-set rejection protocol of our
method: instead of extending the target label set with newly
discovered labels extracted by unmatched target clusters,
this method extends it for each individual test instance with



Algorithm 3: Similarity function sim(·, ·)
Input: Set of source attributes Λ̄lS ,

Set of target attributes Λ̄T

Output: Similarity score s

/* Compute normalized weights */

ref ← reverse(range(len(Λ̄lSi)))
w← (ref −min(ref))/(max(ref)−min(ref))

/* Incrementally compute score */
s← 0
for is ← 0 to len(Λ̄lS) do

for it ← 0 to len(Λ̄T) do
if Λ̄lS [is] = Λ̄T[it] then

s← s + w[abs(it − is)]
end

end
end
s← s/len(Λ̄lSi)

Algorithm 4: Attribute matching

Input: Target candidate labels Ycand,T,
Similarity function sim(·, ·), Threshold γ,
Number of shared classes K,
Number of target clusters |C|,
Number of tokens t

Output: Target private labels Ypriv,T

Ypriv,T ← Ø
for i← 0 to |C| do

match← False
for j ← 0 to K do

if sim(Λ̄lSj , Λ̄i,T) < γ then
match← True

end
end
if ¬match then

lcand,T = Ypriv,T[i]
Add lcand,T to Ypriv,T

end
end

the names of the objects detected by ViLT [6] in that spe-
cific sequence. The detection process is carried out in the
same way as in AutoLabel.

ActionCLIP-Oracle [3] We implement this baseline by
extending the label set with the ground truth names of the
target private categories. For fair comparison, all hyper-
parameters for these baselines match those employed for
AutoLabel in each setting.
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Figure 1. Sensitivity study on the threshold gamma for
HMDB→UCF

F. Additional results
F.1. Detailed Epic-Kitchens results

We report in Table 2 the complete results of our method
and its competitors on the Epic-Kitchens setting, includ-
ing the ALL, OS∗ and UNK metrics, omitted in the main
document for space issues. it is possible to observe in
the complete Table that, especially when compared to the
HMDB↔UCF case, this benchmark is characterized by a
significant instability. In particular, it is evident that, across
different methods considered, the HOS score is affected by
a strong tendency of most methods to either over-accept,
resulting in a higher OS∗ score, or over-reject, producing
a higher UNK score. However, it is possible to observe
that the results obtained with our proposed AutoLabel
method, when compared to most competitors, are character-
ized by a better balance between OS∗ and UNK, indicating
a more controlled training process.

F.2. Ablation analysis

We provide in this Section a further ablation analy-
sis omitted from the main document for space issue. In
particular, we report a sensitivity score on the matching
threshold γ with respect to the reference HOS metric, for
HMDB→UCF (Fig. 1) and for Epic-Kitchens D1→D2
(Fig. 2). From this study, it emerges that the score consis-
tently oscillates around 80% for HMDB→UCF and around
40% for Epic-Kitchens.

F.3. Discovered candidate classes

We provide in this Section an overview of the
ground-truth and discovered target-private classes for the
HMDB→UCF and Epic-Kitchens D1→D2 settings, in Ta-
bles 3 and 6, respectively. In the left column of the Tables
we report the actual names of the private classes of the tar-
get domain, and on the right one we report the names of the
candidate target-private labels identified by our proposed
AutoLabel framework, which are composed by concate-
nating the most relevant attributes extracted from each clus-
ter that was not matched with any shared class. We can



Dataset # shared classes # private classes # source train samples # target train samples # test samples

HMDB 6 6 375 781 337
UCF 6 6 865 1438 571
EK-D1 8 75 1543 2021 625
EK-D2 8 84 2495 3755 885
EK-D3 8 82 3897 5847 1230

Table 1. Statistics of the considered benchmarks for the experimental evaluation

Setting→ D2→D1 D3→D1 D1→D2

Method ↓ ALL OS∗ UNK HOS ALL OS∗ UNK HOS ALL OS∗ UNK HOS

CEVT [1] 30.5 7.2 76.8 13.2 31.8 8.1 76.8 14.7 18.7 4.5 67.4 8.4
CEVT-CLIP [1] 26.8 7.3 68.9 13.2 24.4 10.0 67.8 17.3 16.6 7.3 71.8 13.3
ActionCLIP [8] 24.6 32.2 48.1 31.3 19.5 29.2 27.5 28.3 21.3 25.6 74.5 38.1
ZOC [2] 22.0 18.4 43.6 25.9 20.9 29.2 24.7 26.8 23.6 24.7 44.4 31.7
AutoLabel (ours) 28.5 26.1 52.3 34.8 29.6 30.0 52.9 38.3 23.3 33.9 63.1 44.1

Oracle [3] 25.6 23.8 55.0 33.2 21.9 26.0 45.5 33.1 31.7 33.1 42.1 37.1

Setting→ D3→D2 D1→D3 D2→D3

Method ↓ ALL OS∗ UNK HOS ALL OS∗ UNK HOS ALL OS∗ UNK HOS

CEVT [1] 25.2 8.9 78.5 16.0 21.6 4.3 71.0 8.1 25.5 6.1 77.7 11.3
CEVT-CLIP [1] 21.3 8.0 67.4 14.3 21.5 5.5 69.1 10.2 19.8 5.5 65.2 10.1
ActionCLIP [8] 24.6 35.8 55.2 43.4 26.3 20.4 50.4 29.0 30.6 16.7 44.2 24.2
ZOC [2] 23.8 34.1 52.5 41.3 23.5 21.3 41.0 28.0 31.1 24.1 22.2 23.1
AutoLabel (ours) 25.7 39.9 68.4 50.4 29.6 28.5 36.2 31.9 27.7 21.1 50.8 29.8

Oracle [3] 16.3 31.7 75.4 44.6 21.2 17.8 37.6 24.2 28.4 18.8 62.8 28.9

Table 2. Results of all considered methods for the Epic-Kitchens settings. We include in this Table all the open-set metrics, included those
omitted from the main document for space issues. Our proposed AutoLabel method is shown to achieve the best HOS score in all
settings by achieving an effective balance of OS∗ and UNK.
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Figure 2. Sensitivity study on the threshold gamma for Epic-
Kitchens D1→D2

firstly observe that the discovered classes on HMDB→UCF
show a significant diversity, especially when looking at the
first attributes for each candidate label name, which are the
most relevant ones. On the other hand, discovered classes
on Epic-Kitchens appear to be significantly more noisy and
generic. As mentioned in the main document, we associate

this behavior to the fact that video sequences in each do-
main of the Epic-Kitchens dataset are all constrained to the
same kitchen environment, thus characterized by the same
(or similar) objects across multiple categories.

F.4. Cluster attributes

We show in Tables 4 and Tables 5, respectively, two ex-
amples of the attributes extracted from sample target cluster
for the HMDB→UCF setting, along with the final target de-
scription obtained with the tfidf module. It is possible to
observe in these tables how the final attributes are able to
reduce redundancy and provide an effective description for
the candidate unknown class.

F.5. Output visualization

We provide in this Section examples of correct and incor-
rect predictions of our model, on both shared and target pri-
vate categories. We include an example for HMDB→UCF
(Fig. 3) and one for Epic-Kitchens D1→D2 (Fig. 4). It



Ground truth Discovered

pushup water AND horse AND fence
ride bike rope AND table AND table AND window
ride horse bike AND street AND car
shoot ball basketball AND building AND fence
shoot bow rock AND rope AND window

walk road AND bike AND car
sign AND net AND court

horse AND field AND building
floor AND chair AND table

refrigerator AND bed AND door
field AND dog AND grass

boxers AND men AND referee
horse AND building AND fence

dog AND grass AND fence
hoop AND basketball AND net

rack AND door AND mirror
house AND grass AND building

soccer AND field AND net
stick AND grass AND fence

Table 3. List of the actual names of the ground truth target pri-
vate classes (left) and a selection of candidate target-private label
names identified by AutoLabel (right) for the HMDB→UCF
setting

Figure 3. Example of correct and incorrect predictions of
AutoLabel on both shared and private categories on the
HMDB→UCF setting

is possible to observe in Fig. 4 how the high similarity
among distinct Epic-Kitchens categories easily leads to in-
correct prediction on both shared and unknown classes. On
the other hand, it emerges from the example in Fig. 3 how
the model may fail in correctly classifying sequences from
HMDB↔UCF, despite its ability to extract a useful descrip-
tion (e.g. see bottom right example in Fig. 3).

Original cluster attributes Final cluster attributes

horse fence horse
fence person person
field people fence
man dirt man
grass horse tree
horse sand water
zebra horse

mountain person
bush fence
horse man
tree sand

water horse
fence beach

person people
water man
person hat
horse shirt
bush sky

person horse
man mountain
road bush
horse sand
zebra person
horse water
beach man
water fence

woman horse
building tree

horse person
beach bunch
horse tree
sand fence
hat person

water car
beach horse

Table 4. List of original and final attributes extracted from a sam-
ple target cluster for the HMDB→UCF setting. We emphasize
each of the final attributes in a different color in order to highlight
occurrences among the original ones

Figure 4. Example of correct and incorrect predictions of
AutoLabel on both shared and private categories on the Epic-
Kitchens D1→D2 setting



Original cluster attributes Final cluster attributes

ball ball net ball
hoop people basketball male
male sign ball basketball

basketball light gym hoop
white kite male net
ball male door court
male female rack
net ball ball

court rack female
hoop boy male
gym ball people
hoop basketball basketball
ball men hoop
male court ball

basketball net male
ball ball door
male hoop hoop
rack male ball

people basketball male
table white male
ball ball court

hoop net man
net people hoop

basket court net
person basketball basketball
hoop basketball court
ball ball court
male men men
gym net male

female basket hoop
ball ball basket
ball basketball gym

Table 5. List of original and final attributes extracted from a sample target cluster for the HMDB→UCF setting. We emphasize each of the
final attributes in a different color in order to highlight occurrences among the original ones



Ground truth Discovered

turn-on shake compress glass AND brush AND plate AND cup AND fork
drop knead scrape brush AND sponge AND plate AND cup AND fork
grate extract crush chair AND sponge AND plate AND cup AND fork

throw-into spread move around microwave AND brush AND plate AND cup AND fork
turn throw remove from refrigerator AND sponge AND plate AND cup AND fork
see set wrap woman AND carrot AND plate AND cup AND fork

adjust hang gather phone AND sponge AND plate AND cup AND fork
fold separate wrap around brush AND chair AND plate AND cup AND fork

wait-for flip press brush AND chair AND sponge AND cup AND fork
scoop eat wrap with pizza AND glass AND plate AND cup AND fork
taste heat rotate carrot AND brush AND plate AND cup AND fork
drink wait fix mirror AND microwave AND plate AND cup AND fork

turn-off check crack phone AND chair AND sponge AND plate AND cup
drain look for read glass AND chair AND plate AND cup AND fork

squeeze sprinkle split mirror AND sponge AND plate AND cup AND fork
dry roll seal book AND glass AND brush AND chair AND cup

move peel press down cookie AND brush AND sponge AND plate AND fork
empty unroll break book AND woman AND plate AND cup AND fork
unfold hold distribute glass AND chair AND sponge AND plate AND fork

switch-on spread onto serve refrigerator AND chair AND plate AND cup AND fork
put-in flatten pat
spoon pull down throw in

sprinkle-onto take out lower
put-into remove take off

move-into lift throw off
attach-onto pat down grind

twist-off immerge spray
hand move onto tap

Table 6. List of the actual names of the ground truth target private classes (left) and list of candidate target-private label names identified
by AutoLabel (right) for the Epic-Kitchens D1→D2 setting
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