# AutoLabel: CLIP-based framework for Open-set Video Domain Adaptation

Supplementary Material

Giacomo Zara<sup>1</sup>, Subhankar Roy<sup>3</sup>, Paolo Rota<sup>1</sup>, Elisa Ricci<sup>1,2</sup> <sup>1</sup>University of Trento, Italy <sup>2</sup>Fondazione Bruno Kessler, Italy <sup>3</sup>LTCI, Télécom Paris, Institut polytechnique de Paris, France

{giacomo.zara,paolo.rota,e.ricci}@unitn.it, subhankar.roy@telecom-paris.fr

The supplementary material is organized as follows: in Section A we provide further details on our fine-tuning process on the target domain. In Section B we describe in depth the pipeline for attributes extraction and matching. In Section C we provide the pseudo-code for the most relevant routines of our AutoLabel framework. In Section D we provide useful statistics of our considered benchmarks. In Section E we provide a more detailed description of the baseline methods included in our experimental evaluation. In Section F we report additional results and ablation study experiments.

## A. Target fine-tuning

In this Section we provide details of how the target pseudo-labelling and consequent fine-tuning steps are carried out in our AutoLabel framework. ActionCLIP [8] performs inference by projecting the test video to the CLIP space, and assigning the label corresponding to the textual prompts whose embedding is the most similar to the video embedding. In order to fine-tune on the target domain, we freeze the network and apply such inference step to the unlabelled target training batch, obtaining a pseudo-label for each target instance. After that, we filter out all those predictions that are not included in the top-k% most confident ones for that specific label. In order to measure the confidence of a given pseudo-label, we consider the similarity in the CLIP space with the closest set of textual prompts. On the instances of the target training batch passing the filtering process, we simply carry out a standard supervised training step with the ActionCLIP loss.

## **B.** Attributes extraction and matching

In this Section we detail the implementation of the attributes extraction and matching pipeline mentioned in the main paper. In particular, we provide the formal details of the tfidf and  $sim(\cdot, \cdot)$  functions from Sections 3.2.2 and 3.2.3, respectively. As mentioned in the paper, the off-theshelf image captioning model ViLT [6] extracts a set of attributes from a selection of frames in a given input video sequence. For our experiments, we set up the model in order to extract 5 attributes for each of 5 frames out of each video sequence. After that, we select the 5 most frequent attributes across the frame selection in order to build the final set of attributes for the sequence.

### B.1. tfidf function

After the extraction carried out by ViLT, we are provided with a set of attributes for each video sequence. The following steps demand the extraction of a set of attributes for a given class (source domain) and for a given video cluster (target domain). In both cases the pipeline is the same, and we only change the set of instances given as input. Given the sets of instances, we apply the tfidf module, which is implemented as follows. We firstly compute the most frequent attributes across all the input instances; at this point, we compute the Term-frequency and Inverse Document Frequency (tf-idf) [4,7] score of each attribute. Given a set of text documents and the corresponding token vocabulary, the *tf-idf* value of a given token with respect of a given document is designed in order to quantify how relevant that token is for that document. Formally, this score is defined as the product of two different statistics, namely Term frequency (tf) and Inverse document frequency (idf), defined as follows:

$$tf(t,d) = \frac{f_{t,d}}{\sum_{t' \in d} f_{t',d}} \tag{1}$$

$$idf(t,D) = \log \frac{N}{|\{d \in D : t \in d\}}$$

$$\tag{2}$$

$$tfidf(t, d, D) = tf(t, d) \cdot idf(t, D)$$
(3)

where  $f_{t,d}$  is the raw count of of term t in the document d, i.e., the number of occurrences of term t in d. N is the total number of documents considered, and D is the set of documents.

The conceptual intuition behind this score lies in the fact that a given term is most likely to be relevant for a given document if (i) it occurs often in the document and (ii) it occurs seldom in any other document. In our case, we consider one document for each class (N = K, source domain) or for each cluster (N = C, target domain): each document comprises the most common attributes across that specific set of instances. Consequently, by thresholding the *tf-idf* of each attribute, we end up with the most relevant terms for each source class and for each target cluster. We set this threshold to 0.5 for all experiments.

## **B.2.** Matching

Once provided with a set of relevant terms for each source class and for each target cluster, we carry out the matching step as described in the main document. This step relies on the  $sim(\cdot, \cdot)$  function, which takes as input two sets of attributes, ordered by confidence during the extraction, and computes a similarity score. Given  $a_s$  attributes in the source set, this function defines  $a_s$  weights in decreasing order normalized between 0 and 1. For each common occurrences, it adds up to the score value (initially 0) the weight corresponding the absolute distance between the positions of such occurrences in the two input sets. Informally, the intuition behind this score consists in the idea of taking into account both the number of co-occurrences of attributes between the two sets and their position, the latter accounting for their frequency in the corresponding input set. At the end of this loop, the score is again normalized and used to fill the S matrix mentioned in Sec. 3.2.3.

### C. Pseudo-code

In this Section we provide the pseudo-code for the different modules of our framework. In particular, Alg. 1 presents the attribute extraction step presented in Section 3.2.1 of the main document; Alg. 2 presents the discovery process of candidate target classes presented in 3.2.2, Alg. 3 details the similarity function  $sim(\cdot, \cdot)$  referenced in 3.2.3 and Alg. 4 provides the pipeline for the attribute matching process described in 3.2.3.

## **D.** Datasets statistics

In this Section we provide detailed statistics about the benchmarks considered in our experimental evaluation. In particular, we report for each dataset in Table 1 the number of shared and private classes and the number of source training, target training and test samples.

## E. Baseline details

In this Section we provide additional details about the baseline methods we implemented autonomously.

**CEVT-CLIP** [1] This baseline has been implemented by simply modifying the original code provided by the authors in [1], replacing the ResNet [5] backbone with the Action-CLIP [8] encoder.

ActionCLIP [8] This baseline is obtained by modifying our own framework, itself based on the ActionCLIP architecture, in order to apply a different open-set rejection protocol. In order to make the choice of whether to assign a

| Algorithm 1: Attribute extraction                                                                                  |
|--------------------------------------------------------------------------------------------------------------------|
| <b>Input:</b> Source video sequences $\mathbf{X}^{S}$ ,                                                            |
| Target video sequences $\mathbf{X}^{\mathrm{T}}$ , Prompt z,                                                       |
| ViLT model ViLT(),                                                                                                 |
| Number of selected frames $F$ , Number of                                                                          |
| selected attributes k, tf-idf module tfidf                                                                         |
| <b>Output:</b> Set of source attributes $\overline{\Lambda}^{l^{\circ}}$ ,                                         |
| Set of target attributes $\Lambda^{T}$                                                                             |
| for $\mathbf{X} \in \{\mathbf{X}^{\mathtt{S}}, \mathbf{X}^{\mathtt{T}}\}, d \in \{l^{\mathtt{S}}, \mathtt{T}\}$ do |
| for $i \leftarrow 0$ to $ \mathbf{X} $ do                                                                          |
| $ $ $\mathbf{x} \leftarrow \mathbf{X}[i]$                                                                          |
| $[ video\_attributes \leftarrow [ ]$                                                                               |
| for $j \in F$ do                                                                                                   |
| $\mathcal{A}(\mathbf{x}_j) \leftarrow \texttt{Vilt}(\mathbf{x}_j, z)$                                              |
| Append attributes in $\mathcal{A}(\mathbf{x}_j)$ to                                                                |
| video_attributes                                                                                                   |
| end                                                                                                                |
| end                                                                                                                |
| $\mathbf{mc} \leftarrow \operatorname{argtop}_k(\mathbf{video\_attributes})$                                       |
| $\mathbf{filtered} \leftarrow \texttt{tfidf}(\mathbf{mc})$                                                         |
| Add attributes in filtered to $\bar{\Lambda}^d$                                                                    |
| end                                                                                                                |

| Algorithm 2: Discovering candidate classes                            |
|-----------------------------------------------------------------------|
| <b>Input:</b> Target video sequences $\mathbf{X}^{T}$ , Video encoder |
| $G_{V}$ Number of target clusters $ \mathcal{C} $                     |

 $\begin{array}{c} G_V, \text{Number of target clusters } |\mathcal{C}|, \\ \text{Set of target attributes } \bar{\Lambda}^{\text{T}}, \text{Clustering} \\ \text{function } Cluster \\ \textbf{Output: Target candidate labels } \mathcal{Y}^{\text{cand},\text{T}} \\ \textbf{V}^{\text{T}} \leftarrow G_V(\textbf{X}^{\text{T}}) \\ \mathcal{C} \leftarrow Cluster(\textbf{v}^{\text{T}}) \\ \mathcal{Y}^{\text{cand},\text{T}} \leftarrow \emptyset \\ \textbf{for } c \leftarrow 0 \text{ to } |\mathcal{C}| \text{ do} \\ & | \bar{\Lambda}^{c,\text{T}} \leftarrow \\ \text{Attributes for videos belonging to cluster } c \\ & | l_c^{\text{cand},\text{T}} = \bar{\Lambda}_1^{c,\text{T}} || \dots || \bar{\Lambda}_t^{c,\text{T}} \\ \text{Add } l_c^{\text{cand},\text{T}} \text{ to } \mathcal{Y}^{\text{cand},\text{T}} \end{array}$ 

end

known or unknown label to a test target sample, this method simply thresholds the similarity, in the CLIP space, between the video embedding and the closest set of label prompts. This threshold has been set to 0.9 for  $HMDB \leftrightarrow UCF$  and to 0.5 for Epic-Kitchens.

ActionCLIP-ZOC [2] This baseline is implemented as a modification of the open-set rejection protocol of our method: instead of extending the target label set with newly discovered labels extracted by unmatched target clusters, this method extends it for each individual test instance with **Algorithm 3:** Similarity function  $sim(\cdot, \cdot)$ **Input:** Set of source attributes  $\bar{\Lambda}^{l^{s}}$ , Set of target attributes  $\bar{\Lambda}^{T}$ **Output:** Similarity score s /\* Compute normalized weights  $\mathbf{ref} \leftarrow reverse(range(len(\bar{\Lambda}^{l_i^s})))$  $\mathbf{w} \leftarrow (\mathbf{ref} - min(\mathbf{ref}))/(max(\mathbf{ref}) - min(\mathbf{ref}))$ 

/\* Incrementally compute score \*/  $s \leftarrow 0$ for  $i_s \leftarrow 0$  to  $len(\bar{\Lambda}^{l^s})$  do for  $i_t \leftarrow 0$  to  $len(\bar{\Lambda}^T)$  do if  $\bar{\Lambda}^{l^{s}}[i_{s}] = \bar{\Lambda}^{T}[i_{t}]$  then

\*/

 $| s \leftarrow s + \mathbf{w}[abs(i_t - i_s)]$ end

end end

 $s \leftarrow s/len(\bar{\Lambda}^{l_i^s})$ 

end

Algorithm 4: Attribute matching

```
Input: Target candidate labels \mathcal{Y}^{cand,T},
          Similarity function sim(\cdot, \cdot), Threshold \gamma,
          Number of shared classes K,
          Number of target clusters |C|,
          Number of tokens t
Output: Target private labels \mathcal{Y}^{\text{priv},T}
\mathcal{V}^{\text{priv}, \mathtt{T}} \leftarrow \mathcal{O}
for i \leftarrow 0 to |\mathcal{C}| do
     match \leftarrow False
     for j \leftarrow 0 to K do
          if sim(\bar{\Lambda}^{l_j^s}, \bar{\Lambda}^{i,T}) < \gamma then
           \parallel match \leftarrow True
          end
     end
     if ¬match then
          end
```

the names of the objects detected by ViLT [6] in that specific sequence. The detection process is carried out in the same way as in AutoLabel.

ActionCLIP-Oracle [3] We implement this baseline by extending the label set with the ground truth names of the target private categories. For fair comparison, all hyperparameters for these baselines match those employed for AutoLabel in each setting.



Figure 1. Sensitivity study on the threshold gamma for  $HMDB \rightarrow UCF$ 

## F. Additional results

### F.1. Detailed Epic-Kitchens results

We report in Table 2 the complete results of our method and its competitors on the Epic-Kitchens setting, including the ALL, OS\* and UNK metrics, omitted in the main document for space issues. it is possible to observe in the complete Table that, especially when compared to the  $HMDB \leftrightarrow UCF$  case, this benchmark is characterized by a significant instability. In particular, it is evident that, across different methods considered, the HOS score is affected by a strong tendency of most methods to either over-accept, resulting in a higher **OS**<sup>\*</sup> score, or over-reject, producing a higher **UNK** score. However, it is possible to observe that the results obtained with our proposed AutoLabel method, when compared to most competitors, are characterized by a better balance between OS\* and UNK, indicating a more controlled training process.

#### **F.2.** Ablation analysis

We provide in this Section a further ablation analysis omitted from the main document for space issue. In particular, we report a sensitivity score on the matching threshold  $\gamma$  with respect to the reference **HOS** metric, for *HMDB* $\rightarrow$ *UCF* (Fig. 1) and for *Epic-Kitchens* D1 $\rightarrow$ D2 (Fig. 2). From this study, it emerges that the score consistently oscillates around 80% for  $HMDB \rightarrow UCF$  and around 40% for Epic-Kitchens.

#### F.3. Discovered candidate classes

We provide in this Section an overview of the ground-truth and discovered target-private classes for the *HMDB* $\rightarrow$ *UCF* and *Epic-Kitchens D1* $\rightarrow$ *D2* settings, in Tables 3 and 6, respectively. In the left column of the Tables we report the actual names of the private classes of the target domain, and on the right one we report the names of the candidate target-private labels identified by our proposed AutoLabel framework, which are composed by concatenating the most relevant attributes extracted from each cluster that was not matched with any shared class. We can

| Dataset | # shared classes | # private classes | # source train samples | # target train samples | # test samples |
|---------|------------------|-------------------|------------------------|------------------------|----------------|
| HMDB    | 6                | 6                 | 375                    | 781                    | 337            |
| UCF     | 6                | 6                 | 865                    | 1438                   | 571            |
| EK-D1   | 8                | 75                | 1543                   | 2021                   | 625            |
| EK-D2   | 8                | 84                | 2495                   | 3755                   | 885            |
| EK-D3   | 8                | 82                | 3897                   | 5847                   | 1230           |

Table 1. Statistics of the considered benchmarks for the experimental evaluation

| $ $ Setting $\rightarrow$ |      | D2-             | →D1  |      |      | D3-             | →D1  |      |      | D1-             | →D2  |      |
|---------------------------|------|-----------------|------|------|------|-----------------|------|------|------|-----------------|------|------|
| Method ↓                  | ALL  | $\mathbf{OS}^*$ | UNK  | HOS  | ALL  | $\mathbf{OS}^*$ | UNK  | HOS  | ALL  | $\mathbf{OS}^*$ | UNK  | HOS  |
| CEVT [1]                  | 30.5 | 7.2             | 76.8 | 13.2 | 31.8 | 8.1             | 76.8 | 14.7 | 18.7 | 4.5             | 67.4 | 8.4  |
| CEVT-CLIP [1]             | 26.8 | 7.3             | 68.9 | 13.2 | 24.4 | 10.0            | 67.8 | 17.3 | 16.6 | 7.3             | 71.8 | 13.3 |
| ActionCLIP [8]            | 24.6 | 32.2            | 48.1 | 31.3 | 19.5 | 29.2            | 27.5 | 28.3 | 21.3 | 25.6            | 74.5 | 38.1 |
| ZOC [2]                   | 22.0 | 18.4            | 43.6 | 25.9 | 20.9 | 29.2            | 24.7 | 26.8 | 23.6 | 24.7            | 44.4 | 31.7 |
| AutoLabel (ours)          | 28.5 | 26.1            | 52.3 | 34.8 | 29.6 | 30.0            | 52.9 | 38.3 | 23.3 | 33.9            | 63.1 | 44.1 |
| Oracle [3]                | 25.6 | 23.8            | 55.0 | 33.2 | 21.9 | 26.0            | 45.5 | 33.1 | 31.7 | 33.1            | 42.1 | 37.1 |
| $ $ Setting $\rightarrow$ |      | D3-             | →D2  |      |      | D1-             | →D3  |      |      | D2-             | →D3  |      |
| Method ↓                  | ALL  | $\mathbf{OS}^*$ | UNK  | HOS  | ALL  | $\mathbf{OS}^*$ | UNK  | HOS  | ALL  | $\mathbf{OS}^*$ | UNK  | HOS  |
| CEVT [1]                  | 25.2 | 8.9             | 78.5 | 16.0 | 21.6 | 4.3             | 71.0 | 8.1  | 25.5 | 6.1             | 77.7 | 11.3 |
| CEVT-CLIP [1]             | 21.3 | 8.0             | 67.4 | 14.3 | 21.5 | 5.5             | 69.1 | 10.2 | 19.8 | 5.5             | 65.2 | 10.1 |
| ActionCLIP [8]            | 24.6 | 35.8            | 55.2 | 43.4 | 26.3 | 20.4            | 50.4 | 29.0 | 30.6 | 16.7            | 44.2 | 24.2 |
| ZOC [2]                   | 23.8 | 34.1            | 52.5 | 41.3 | 23.5 | 21.3            | 41.0 | 28.0 | 31.1 | 24.1            | 22.2 | 23.1 |
| AutoLabel (ours)          | 25.7 | 39.9            | 68.4 | 50.4 | 29.6 | 28.5            | 36.2 | 31.9 | 27.7 | 21.1            | 50.8 | 29.8 |
| Oracle [3]                | 16.3 | 31.7            | 75.4 | 44.6 | 21.2 | 17.8            | 37.6 | 24.2 | 28.4 | 18.8            | 62.8 | 28.9 |

Table 2. Results of all considered methods for the *Epic-Kitchens* settings. We include in this Table all the open-set metrics, included those omitted from the main document for space issues. Our proposed AutoLabel method is shown to achieve the best **HOS** score in all settings by achieving an effective balance of **OS**<sup>\*</sup> and **UNK**.



Figure 2. Sensitivity study on the threshold gamma for Epic-Kitchens  $D1 \rightarrow D2$ 

firstly observe that the discovered classes on  $HMDB \rightarrow UCF$ show a significant diversity, especially when looking at the first attributes for each candidate label name, which are the most relevant ones. On the other hand, discovered classes on *Epic-Kitchens* appear to be significantly more noisy and generic. As mentioned in the main document, we associate this behavior to the fact that video sequences in each domain of the *Epic-Kitchens* dataset are all constrained to the same kitchen environment, thus characterized by the same (or similar) objects across multiple categories.

### **F.4.** Cluster attributes

We show in Tables 4 and Tables 5, respectively, two examples of the attributes extracted from sample target cluster for the  $HMDB \rightarrow UCF$  setting, along with the final target description obtained with the tfidf module. It is possible to observe in these tables how the final attributes are able to reduce redundancy and provide an effective description for the candidate unknown class.

### F.5. Output visualization

We provide in this Section examples of correct and incorrect predictions of our model, on both shared and target private categories. We include an example for  $HMDB \rightarrow UCF$  (Fig. 3) and one for *Epic-Kitchens D1\rightarrowD2* (Fig. 4). It

| Ground truth | Discovered                          |
|--------------|-------------------------------------|
| pushup       | water AND horse AND fence           |
| ride bike    | rope AND table AND table AND window |
| ride horse   | bike AND street AND car             |
| shoot ball   | basketball AND building AND fence   |
| shoot bow    | rock AND rope AND window            |
| walk         | road AND bike AND car               |
|              | sign AND net AND court              |
|              | horse AND field AND building        |
|              | floor AND chair AND table           |
|              | refrigerator AND bed AND door       |
|              | field AND dog AND grass             |
|              | boxers AND men AND referee          |
|              | horse AND building AND fence        |
|              | dog AND grass AND fence             |
|              | hoop AND basketball AND net         |
|              | rack AND door AND mirror            |
|              | house AND grass AND building        |
|              | soccer AND field AND net            |
|              | stick AND grass AND fence           |

Table 3. List of the actual names of the ground truth target private classes (left) and a selection of candidate target-private label names identified by AutoLabel (right) for the  $HMDB \rightarrow UCF$  setting



Figure 3. Example of correct and incorrect predictions of AutoLabel on both shared and private categories on the  $HMDB \rightarrow UCF$  setting

is possible to observe in Fig. 4 how the high similarity among distinct *Epic-Kitchens* categories easily leads to incorrect prediction on both shared and unknown classes. On the other hand, it emerges from the example in Fig. 3 how the model may fail in correctly classifying sequences from  $HMDB \leftrightarrow UCF$ , despite its ability to extract a useful description (e.g. see bottom right example in Fig. 3).

| Original c | luster attributes | Final cluster attributes |
|------------|-------------------|--------------------------|
| horse      | fence             | horse                    |
| fence      | person            | person                   |
| field      | people            | fence                    |
| man        | dirt              | man                      |
| grass      | horse             | tree                     |
| horse      | sand              | water                    |
| zebra      | horse             |                          |
| mountain   | person            |                          |
| bush       | fence             |                          |
| horse      | man               |                          |
| tree       | sand              |                          |
| water      | horse             |                          |
| fence      | beach             |                          |
| person     | people            |                          |
| water      | man               |                          |
| person     | hat               |                          |
| horse      | shirt             |                          |
| bush       | sky               |                          |
| person     | horse             |                          |
| man        | mountain          |                          |
| road       | bush              |                          |
| horse      | sand              |                          |
| zebra      | person            |                          |
| horse      | water             |                          |
| beach      | man               |                          |
| water      | fence             |                          |
| woman      | horse             |                          |
| building   | tree              |                          |
| horse      | person            |                          |
| beach      | bunch             |                          |
| horse      | tree              |                          |
| sand       | fence             |                          |
| hat        | person            |                          |
| water      | car               |                          |
| beach      | horse             |                          |

Table 4. List of original and final attributes extracted from a sample target cluster for the  $HMDB \rightarrow UCF$  setting. We emphasize each of the final attributes in a different color in order to highlight occurrences among the original ones



Figure 4. Example of correct and incorrect predictions of AutoLabel on both shared and private categories on the *Epic-Kitchens*  $D1 \rightarrow D2$  setting

| Origin     | al cluster att | Final cluster attributes |            |
|------------|----------------|--------------------------|------------|
| ball       | ball           | net                      | ball       |
| hoop       | people         | basketball               | male       |
| male       | sign           | ball                     | basketball |
| basketball | light          | gym                      | hoop       |
| white      | kite           | male                     | net        |
| ball       | male           | door                     | court      |
| male       | female         | rack                     |            |
| net        | ball           | ball                     |            |
| court      | rack           | female                   |            |
| hoop       | boy            | male                     |            |
| gym        | ball           | people                   |            |
| hoop       | basketball     | basketball               |            |
| ball       | men            | hoop                     |            |
| male       | court          | ball                     |            |
| basketball | net            | male                     |            |
| ball       | ball           | door                     |            |
| male       | hoop           | hoop                     |            |
| rack       | male           | ball                     |            |
| people     | basketball     | male                     |            |
| table      | white          | male                     |            |
| ball       | ball           | court                    |            |
| hoop       | net            | man                      |            |
| net        | people         | hoop                     |            |
| basket     | court          | net                      |            |
| person     | basketball     | basketball               |            |
| hoop       | basketball     | court                    |            |
| ball       | ball           | court                    |            |
| male       | men            | men                      |            |
| gym        | net            | male                     |            |
| female     | basket         | hoop                     |            |
| ball       | ball           | basket                   |            |
| ball       | basketball     | gym                      |            |

Table 5. List of original and final attributes extracted from a sample target cluster for the  $HMDB \rightarrow UCF$  setting. We emphasize each of the final attributes in a different color in order to highlight occurrences among the original ones

| Ground truth  |             |             | Discovered                                         |
|---------------|-------------|-------------|----------------------------------------------------|
| turn-on       | shake       | compress    | glass AND brush AND plate AND cup AND fork         |
| drop          | knead       | scrape      | brush AND sponge AND plate AND cup AND fork        |
| grate         | extract     | crush       | chair AND sponge AND plate AND cup AND fork        |
| throw-into    | spread      | move around | microwave AND brush AND plate AND cup AND fork     |
| turn          | throw       | remove from | refrigerator AND sponge AND plate AND cup AND fork |
| see           | set         | wrap        | woman AND carrot AND plate AND cup AND fork        |
| adjust        | hang        | gather      | phone AND sponge AND plate AND cup AND fork        |
| fold          | separate    | wrap around | brush AND chair AND plate AND cup AND fork         |
| wait-for      | flip        | press       | brush AND chair AND sponge AND cup AND fork        |
| scoop         | eat         | wrap with   | pizza AND glass AND plate AND cup AND fork         |
| taste         | heat        | rotate      | carrot AND brush AND plate AND cup AND fork        |
| drink         | wait        | fix         | mirror AND microwave AND plate AND cup AND fork    |
| turn-off      | check       | crack       | phone AND chair AND sponge AND plate AND cup       |
| drain         | look for    | read        | glass AND chair AND plate AND cup AND fork         |
| squeeze       | sprinkle    | split       | mirror AND sponge AND plate AND cup AND fork       |
| dry           | roll        | seal        | book AND glass AND brush AND chair AND cup         |
| move          | peel        | press down  | cookie AND brush AND sponge AND plate AND fork     |
| empty         | unroll      | break       | book AND woman AND plate AND cup AND fork          |
| unfold        | hold        | distribute  | glass AND chair AND sponge AND plate AND fork      |
| switch-on     | spread onto | serve       | refrigerator AND chair AND plate AND cup AND fork  |
| put-in        | flatten     | pat         |                                                    |
| spoon         | pull down   | throw in    |                                                    |
| sprinkle-onto | take out    | lower       |                                                    |
| put-into      | remove      | take off    |                                                    |
| move-into     | lift        | throw off   |                                                    |
| attach-onto   | pat down    | grind       |                                                    |
| twist-off     | immerge     | spray       |                                                    |
| hand          | move onto   | tap         |                                                    |

Table 6. List of the actual names of the ground truth target private classes (left) and list of candidate target-private label names identified by AutoLabel (right) for the *Epic-Kitchens*  $D1 \rightarrow D2$  setting

## References

- Zhuoxiao Chen, Yadan Luo, and Mahsa Baktashmotlagh. Conditional extreme value theory for open set video domain adaptation. In *ACM Multimedia Asia*. 2021. 2, 4
- [2] Sepideh Esmaeilpour, Bing Liu, Eric Robertson, and Lei Shu. Zero-shot out-of-distribution detection based on the pretrained model clip. In AAAI, 2022. 2, 4
- [3] Stanislav Fort, Jie Ren, and Balaji Lakshminarayanan. Exploring the limits of out-of-distribution detection. In A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman Vaughan, editors, *Advances in Neural Information Processing Systems*, 2021. 3, 4
- [4] Carol Friedman, Thomas C. Rindflesch, and Milton Corn. Natural language processing: State of the art and prospects for significant progress, a workshop sponsored by the national library of medicine. *Journal of Biomedical Informatics*, 2013.
- [5] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In *CVPR*, 2016.
   2
- [6] Wonjae Kim, Bokyung Son, and Ildoo Kim. Vilt: Vision-andlanguage transformer without convolution or region supervision. In *ICML*, 2021. 1, 3
- [7] Katsuya Masuda, Takuya Matsuzaki, and Jun'ichi Tsujii. Semantic search based on the online integration of nlp techniques. *Procedia - Social and Behavioral Sciences*, 2011. 1
- [8] Mengmeng Wang, Jiazheng Xing, and Yong Liu. Actionclip: A new paradigm for video action recognition. arXiv preprint arXiv:2109.08472, 2021. 1, 2, 4