
OCTET: Object-aware Counterfactual Explanations
— Supplementary material —

Mehdi Zemni1, Mickaël Chen1, Éloi Zablocki1, Hédi Ben-Younes1, Patrick Pérez1, Matthieu Cord1,2

1 Valeo.ai, Paris, France 2 Sorbonne Université, Paris, France

Contents

1. Technical Details 1
1.1. Decision models. 1
1.2. BlobGan backbone. 1
1.3. Training the encoder 1
1.4. Time complexity 2

2. Further ablations 2
2.1. Image inversion 2
2.2. Encoder training 2

3. Reconstruction quality 3
3.1. Discussion on sparsity of changes 3

4. Finding the blob index to target 3

5. Details on the User Study 4
5.1. Protocol details 4
5.2. Collected responses 5

6. Preliminary experiments on LSUN dataset 6

1. Technical Details
1.1. Decision models.

The decision model used in the main paper is the same
DenseNet [3] as the one used in STEEX [4]. However, in
addition to the ‘Move Forward’ class, we also study ‘Stop’,
‘Can turn Left’, ‘Can turn Right’ classes which were not
discussed in STEEX.

1.2. BlobGan backbone.

The original BlobGAN [1] was trained on datasets of in-
door scenes. We present here the changes we made to train
it on BDD. Firstly, in order to generate rectangle images,
we change the size of the input feature grid from 16 × 16
to 8× 16, but increase the number of convolutional and up-
sampling blocks by 1, resulting in outputs images of res-
olution 256 × 512. Secondly, the number of objects in
the driving scenes is usually larger compared to the indoor
scenes. Therefore, we increase the number of blobs from

K = 10 to K = 40. However, multiplying the number
of blobs by 4 increases the number of layout network pa-
rameters. To keep the complexity reasonable, we decrease
the size of the feature vectors describing the blobs from
din = 768, dstyle = 512 to din = dstyle = 256. This model
has 69.9M parameters in the generator (28.6M in the layout
network and 41.2M in the synthesis network). We trained
the generator for 17 days (1.5M iteration) on one NVIDIA
A100 GPU with a batch size of 10.

1.3. Training the encoder

The encoder E is trained to predict the blob parameters
from input images. Its architecture is similar to that of the
discriminator of StyleGAN-2, except for the output size of
the last layer. One challenge of predicting the blob param-
eters is that we have a large number of blobs, leading to
a large number of trainable parameters in the encoder. To
avoid this issue, we opt to have the encoder not output di-
rectly the blob parameters but instead the features of the
penultimate layer of the layout network. The output layer
of the encoder is then a vector, which we denote h, of size
1024; h can easily be mapped to the blob parameters by for-
warding them through the last layer of the layout network.

The encoder is first pre-trained using generated images
with the following reconstruction objective:

Lpretrain
encoder = L2(h,E(G(h))), (1)

where h is obtained by sampling a noise vector and forward-
ing it through the first layers of the layout network. For the
sake of clarity, we omitted the layout network final layer
that has to be applied to h before being used as input to G.
Pre-training is done for 150k iterations using ADAM opti-
mizer with a learning rate of 0.005 and batch size of 8.

Then, in the second stage, the encoder is fine-tuned on
real and generated images with the following objective:

Lfinetune
encoder = L2(x,G(E(x)))

+ λLPIPSLLPIPS(x,G(E(x)))

+ λlatentL2(h,E(G(h))

+ λdecisionL2(fM (x), fM (G(E(x)))),

(2)

1

FID (↓) LPIPS (↓)
Decision

preserv. (↑)

Eq. 3 53.3 42.3 91.3%
w/o LLPIPS (image) 50.2 56.2 92.8%
w/o L2 (image) 57.0 42.7 91.4%
w/o L2 (decision feat.) 54.4 41.5 73.0%
w/o L2 (latent) 52.0 41.8 91.3%

Table 1. Ablation of the image inversion optimization process
(Eq. 3). The ‘Decision preserv.’ is the percentage of images that
yield the same decisions as their reconstruction using M .

where h is obtained in the same way as during pre-training
of the encoder, and x by sampling from the dataset. This
objective focuses on three different aspects of image inver-
sion. First, we have to make sure that images that we en-
code as latent parameters with E can be reconstructed by
re-applying the generator using these latents. This cycle
consistency is enforced by a perceptual LLPIPS loss [6] and
the L2 loss between real and reconstructed images. Second,
we also ensure that generated images G(z) can be encoded
back into latent space using an L2 loss between the genera-
tive latent parameters z and their estimation by the encoder
E(G(z)). This helps keeping the latents predicted by the
encoder in the generator domain; this term is only used for
generated images. Finally, to encourage the reconstructed
image to be faithful to the decision model, we use an L2

distance between the features fM (x) of the input and the
reconstructed image fM (G(E(x)). This term makes sure
to preserve the features that are important to the decision
model M . Those features must contain both the decision
taken by the decision model, but also capture the percep-
tual semantics that led to the decision. In particular, for the
DenseNet decision model that we have, we consider activa-
tions at the last convolutional layer of the decision model
(DenseNet). This is to ensure that the decisions are kept un-
changed on the reconstruction but also that features that led
to those decisions remain the same. This finetuning stage
is conducted with ADAM, for 150k steps, with a learn-
ing rate of 0.002. Hyper-parameters are found after coarse
manual inspection on some qualitative samples, λLPIPS = 1,
λlatent = 0.1, λdecision = 0.05. The choice of these hyper-
parameters is not critical as obtained latent codes z are then
refined in an optimization phase, as explained in the main
paper (Sec. 3.4).

1.4. Time complexity

OCTET takes ∼28s per counterfactual image, in a batch
of 16. The inversion step amounts to 85% of that time and
the CF optimization 15%.

LPIPS (↓) L2 (↓) L1 (↓)
Decision

preserv. (↑)

Pretrained enc. (after Eq. 1) 57.2 0.230 0.324 63.1%

Finetuned enc. (after Eq. 2) 54.6 0.175 0.278 71.5%
w/o L2 on fM 54.8 0.176 0.279 61.4%
L1 instead of L2 55.3 0.186 0.285 66.3%

Table 2. Ablation of the finetuning process of the encoder
(Eq. 2). The ‘Decision preserv.’ is the percentage of images that
yield the same decisions as their reconstruction using M .

2. Further ablations
We present in this section ablation studies for the im-

age inversion optimization process. In particular, we ablate
the different terms of the loss. Moreover, we recall that
the initial values in this optimization process are given by
the output of an encoder, and we ablate its training objec-
tives as well. In addition to the visual reconstruction met-
rics (FID, LPIPS and pixel-wise distances), we also evaluate
the semantic fidelity of the reconstructions with a ‘Decision
preservation’ score. More precisely, the score measures the
proportion of reconstructions that yield the same decision
as the original image when presented to the model M . This
property is important as decision switches that occur dur-
ing the reconstruction phase are guided neither by the target
class nor by the studied model M and therefore can hinder
the downstream task of creating a reliable counterfactual ex-
planation.

2.1. Image inversion

We present in Tab. 1 an ablation study of the terms of Eq.
3 of the main paper that we recall below:

ϕq, ψq = argmin
ϕ,ψ

LLPIPS(G(ϕ, ψ), x
q))+L2(G(ϕ, ψ), x

q)

+ L2(fM (xq), fM (G(ϕ, ψ)))

+ L2((ϕ, ψ), E(xq)). (3)

We observe that the first two terms improve FID and
LPIPS while the last two do not seem to influence those
scores. However, without the third term, we note a huge
drop (91.3% vs. 73.0%) in the number of reconstructed im-
ages that conserve the model’s original decision. The last
term is a standard safeguard in the literature [7]: although
there is no improvement in terms of LPIPS and FID, we
observed that, without it, some objects were lost in the re-
construction, especially grey cars that blend in the road.

2.2. Encoder training

Tab. 2 reports results for the ablation of the encoder train-
ing losses (Eq. 1 and Eq. 2). The loss on features fM helps
preserve the original decision of M while keeping recon-
struction quality. Using it, 71.5% of auto-encoded images
yield the same decision as the input vs. 61.4% without.

FID (↓) LPIPS (↓)

STEEX 60.2 0.435
OCTET 53.3 0.423

Table 3. Reconstruction capacities of OCTET and STEEX. We
check the quality of reconstruction with FID (is the reconstructed
image realistic?) and LPIPS (is the reconstructed image close to
the input image?). The values below were computed on the vali-
dation set of BDD segmentation dataset (1000 images). Note that
STEEX uses ground truth segmentation masks as additional input.

Also, we chose the L2 pixel loss as in the BlobGAN paper.
With L1, results are slightly degraded.

3. Reconstruction quality
We compare the ability of OCTET and STEEX to recon-

struct real images. To measure the reconstruction quality,
we use the FID [2] between all reconstructions and the set
of real query images. We also measure the mean LLPIPS [6]
distances between all pairs of real and reconstructed images.

In Tab. 3, we report FID and LPIPS scores for recon-
structed images. Overall, we observe that the backbone
used in OCTET and our inversion strategy (encoder + op-
timization) leads to images that are closer to the input im-
age (lower LPIPs) but also more realistic (lower FID) which
means that they are closer to the original data distribution.
Moreover, we stress that OCTET does not use any ground-
truth segmentation maps, unlike STEEX.

In Fig. 1, for some query images (1st column), we show
some qualitative results of:

• images obtained with the encoder E which are then
used as starting points of the optimization described in
Eq. 3 of the main paper (2nd column);

• OCTET reconstructions, which are images obtained
after further optimization with Eq. 3 of the main pa-
per (3rd column);

• STEEX reconstructions (4th column).

Overall, while the encoding step is able to grasp the
rough structure and colors of the scene, we can observe
that the optimization steps that follow are key to get the
fine and precise details of the scene. Moreover, we can see
that STEEX reconstructions sometimes miss important de-
tails (lines and brake lights) that are well captured in the la-
tent space we use for OCTET. Finally, on some small back-
ground details, STEEX reconstructions are sometimes more
accurate and faithful to the query image (e.g., the shape of
trees). However, STEEX makes use of semantic maps that
indicate the semantic class of each pixel. These maps are
strong guides but are very costly to produce for end-users.

3.1. Discussion on sparsity of changes

Sometimes, counterfactual explanations do not display
sparse changes with respect to the original query image. In
fact, the main source of non-sparsity comes from the chal-
lenges of GAN inversion. Despite our efforts and contri-
butions allowing us to outperform previous works in this
regard, our reconstruction already introduces changes (see
Fig. 1). The counterfactual optimization step itself does
not degrade LPIPS further (see Fig. 4 of the main paper
and Tab. 3). In Fig. 2 (not cherry-picked), we illustrate
the sparsity of the CF optimization itself by starting from
generated queries to build the CF, thus not necessitating a
reconstruction step. As the sparsity in this step is satisfac-
tory, we decided not to add a pixel-level regularization that
would also heavily penalize explanations involving object
displacement.

4. Finding the blob index to target

We discussed in the main paper how to assess the impor-
tance of specific blobs with OCTET. But for practical use,
we need to identify which blob corresponds to a given ob-
ject in the scene. We here explain how, taking advantage of
BlobGAN [1], the generative backbone we use, we are able
to find the blob identity.

BlobGAN learns to represent scenes as a collection of
blobs distributed on a canvas in an unsupervised fashion.
As discussed in the original paper for indoor scenes, even
without supervision from object positions and classes, the
model learns to associate certain blobs with certain objects.
We observed that similar properties emerge when training
the model on outdoor driving scenes. For instance, in Fig. 3,
we visualize the correlation between blobs and the seman-
tic classes for cars and roads. We use a pre-trained semantic
segmentation network to measure the number of pixels that
disappeared from each class when removing a blob by set-
ting its size to a negative number. Using such figures, we are
able to determine for instance that blobs 14, 18, 23, 29, 30,
and 35 are very likely to correspond to car-blobs. We then
visualize in Fig. 4 the distribution of the spatial positions of
the center of the blobs on the canvas. To be clear, for each
blob index, we plotted the location of its center and accu-
mulated the plots over 10k generated images. This figure
shows that the blobs have a localized position which is con-
sistent with the fact that the blobs have a semantic meaning.
Combining the location and the semantic class of the blob,
we can infer that blob 30 is likely to correspond to a car in
the middle of the image, while blob 35 is a car on the right
for instance.

Using this knowledge, we can then directly intervene on
the spatial parameters of the blobs to see how it affects the
image and confirm our hypothesis. We show the results of
such manipulation in Fig. 5 and Fig. 6. These findings are

c

Query image OCTET Encoder OCTET reconstruction STEEX reconstruction

Figure 1. Examples of inversion results for OCTET (ours) and STEEX [4].

Right

Right Forward

Forward Left

Left
Query Query Query

OCTET OCTET OCTET

Figure 2. Counterfactual explanations on generated query images. Neither the images nor the target classes are cherry-picked.

consistent across images and make it fairly straightforward
to identify the correct blob for object-targeted counterfactu-
als presented in the main paper.

5. Details on the User Study
5.1. Protocol details

Here, we describe more precisely the details of the user
study (Sec. 4.5). The experiment was conducted as an on-

line form, with no interaction with any operator. The re-
spondents are all voluntary, and we targeted participants
that have familiarity with deep learning. Participants are
randomly split across the two groups (Control group and
group with explanations). We show in Fig. 7 a description
of the study and the templates we used for the forms.

To build the online form, we needed 28 distinct query
images: 16 were used for the observation phase and 12
for the questionnaire. Those were randomly sampled, with

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

500

1,000

1,500

Car

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34 36 38
0

500

1,000

1,500

Road

Figure 3. Blobs semantic meaning. We visualize the correlation between the blobs and the semantic classes ’car’ (top) and ’road’ (bottom).
The x-axis displays blob ids, while values in the y-axis represent the mean number of pixels that are no longer from class c when removing
blob k computed by sampling 200 different latent codes. The number of pixels for class c is estimated using a pre-trained semantic
segmentation network.

no overlap between the two sets. Unknown to the partici-
pants, we made sure that inside each set there are an equal
number of true positives, true negatives, false positives, and
false negatives. This prevents the user’s from over-relying
on their prior knowledge of the task, and should also fa-
cilitate the detection of interesting behaviors of the model.
For the observation images, we have to compute the pre-
dictions from the decision model and the counterfactual ex-
planations. The form for the test group contains all three
elements while the form for the control group only contains
the images and the decision, but no explanation. For the
questionnaire, we simply provide the raw images to both
groups, without any additional information. Using those
same image sets for the two groups ensures that the com-
parison between them is more reliable. However, it does not
control for the variance induced by image selection. To ob-
tain more robust results, we build 5 versions for each form
by randomly sampling 5 times the 28 query images. This
leads to a total of 10 variations of the forms (5 for the con-
trol group and corresponding 5 for the test group). We ran-
domly sample the assignment of one version of the form to
each participant.

For the bias detection study, we first presented them with
one additional test image, the same to all participants, for
which they had to predict the output of the decision model.
We were not interested in their prediction this time, but we
then asked them: ”On the last image, please explain the
factors that drove your choice in a few words”. We also
asked them two additional questions:

• ”Did you manage to identify any particular behavior of
the decision model?”

• ”Did you manage to identify any problem or unex-
pected behavior in the decision model?”

The goal of those questions was to lead them to describe
any peculiar behavior they would have inferred from the
observation phase.

5.2. Collected responses

The collected answers to the free-form questions are pre-
sented in Tab. 4. Unknown to the participants, the decision
model looked at the presence of cars on both the left and
the right side of the road to make its prediction on the ‘Turn
Right’ label. No participant in the control group mentioned

Figure 4. Blobs spatial distribution. We visualize the spatial distribution of blob centroids. By combining the information about the
semantic meaning of the blobs and their spatial localization, we can precisely label main blobs (e.g., blobs representing the front car vs.
blobs representing cars on the right).

this issue while 65% of those that had access to the OCTET
explanations did.

6. Preliminary experiments on LSUN dataset

In Fig. 8, we present preliminary results using the official
pre-trained BlobGAN [1] generator on 3 classes of LSUN.
The decision model is a 3-class classifier trained on LSUN
to distinguish between kitchens, living rooms and dining

rooms. We use generated images as queries. We can ob-
serve for instance that while the presence of a sofa is a clear
distinguishing feature for the decision model, chair style
contributes as well (last column). Also, while the explana-
tions include layout changes impossible with STEEX [4],
the position of objects does not seem as important as in the
BDD experiments as objects are not displaced as much.

Original image Edited images

Blob 30 Blob 14 Blob 35

Blob 35Blob 29Blob 30

Figure 5. Resizing cars. We change the size of certain blobs representing cars. In addition to being able to change their size, we can
make them appear and disappear. We stress that we are doing manual edition by intervening on the size parameter of the blobs. This
contrasts with other figures of the main paper where we are doing counterfactual explanations and changes are automatically found with
the optimization process to explain the decision of a model.

References
[1] Dave Epstein, Taesung Park, Richard Zhang, Eli Shechtman,

and Alexei A. Efros. Blobgan: Spatially disentangled scene
representations. In ECCV, 2022. 1, 3, 6

[2] Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bern-
hard Nessler, and Sepp Hochreiter. Gans trained by a two
time-scale update rule converge to a local nash equilibrium.
In NeurIPS, 2017. 3

[3] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-
ian Q. Weinberger. Densely connected convolutional net-
works. In CVPR, 2017. 1

[4] Paul Jacob, Éloi Zablocki, Hedi Ben-Younes, Mickaël Chen,

Patrick Pérez, and Matthieu Cord. STEEX: steering counter-
factual explanations with semantics. In ECCV, 2022. 1, 4,
6

[5] Fisher Yu, Yinda Zhang, Shuran Song, Ari Seff, and Jianx-
iong Xiao. LSUN: construction of a large-scale image
dataset using deep learning with humans in the loop. CoRR,
abs/1506.03365, 2015. 9

[6] Richard Zhang, Phillip Isola, Alexei A. Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep fea-
tures as a perceptual metric. In CVPR, 2018. 2, 3

[7] Jiapeng Zhu, Yujun Shen, Deli Zhao, and Bolei Zhou. In-
domain GAN inversion for real image editing. In ECCV, 2020.
2

Edited imageEdited blobsOriginal image Original blobs

Blob 30

Blob 30

Blob 29

Blob 29

Figure 6. Moving cars. We change the position of certain blobs representing cars as pointed by the arrow by changing their centroid
coordinates. We stress that we are doing manual edition by intervening on the position parameters of the blobs. This contrasts with other
figures of the main paper where we are doing counterfactual explanations and changes are automatically found with the optimization
process to explain the decision of a model.

O
C

T
E

T
 g

ro
up

Observation phase:1 Questionnaire phase: 2

1 2

co
nt

ro
l g

ro
up

16 images + decisions

Observation phase:
16 images + decisions + explanations

12 images

Questionnaire phase
12 images

times
x16

times
x16

times
x12

times
x12

Figure 7. User study overview. The study is conducted as an online form in two phases. First, in the observation phase, the participant
is shown examples to analyze the prediction of the model. Then, in the questionnaire, they are asked to guess the prediction of the model.
The control group (bottom part) is only shown images and associated decision in the observation phase. The OCTET group (top part) has,
in addition, access to counterfactual explanations.

Kitchen Living room

Kitchen

Dining room Dining room

Living room

Q
ue

ry
 im

ag
e

C
ou

nt
er

fa
ct

ua
l i

m
ag

e

Dining room

Kitchen

Living room

Dining room

Kitchen

Living room

Kitchen

Dining room

Living room

Figure 8. Qualitative results on LSUN dataset [5].

Group Question 1: On the last image, please explain the factors that drove your
choice in a few words

Question 2: Did you manage to identify any particular behavior of the
decision model?

Question 3: Did you manage to identify any problem or unexpected be-
havior in the decision model?

Control white lanes visible right. A Car is also at the right of the screen but not a
dense lane of cars

yellow lanes means can’t turn right. If there is a dense lane of cars can’t
turn but if there is a few can turn. If the ground is covered with some
white marks can turn.

yes the model does not understand if the right lane is occupied or going
in the other direction. When the lane is free but there is a dense lane of
cars parked the algorithm predicts that we can’t turn right

Car detected on the right The decision is ”Can’t turn right” when there are yellow ligns, or there
is a car or an obstacle on the right.

The model does not turn right even when the road seems empty, or does
turn right when the right path is very narrow

Presence of the car The model focus mostly on ground lines and the presence of a car Sometimes the model get confused when ground lines are not typical
12th example looked the same, the front car being too close to the ego-
car.

No Similar paterns (e.g. yellow lines) didn’t seem to be taken into consider-
ation by the model

Black car on the right Don’t turn right if there is a car ahead on the right lane. Not sure, but might not turn right if the car ahead (in the same line) is
close.)

only a car in the same lane but the right lane is free –¿ ”can’t turn”. Cars
on both lane –¿ ”can turn”.

problem with yellow lanes

white line on the right white line on the right full white line on the right
yellow line, visibility of other cars, lighting/contrast lighting affected the model a lot
The is a car on the right If it sees a car on the right far away, doesn’t turn right. If it’s very close,

doesn’t. If it’s a few meters ahead, checks that is not parked ?(brake
lights on?) Or that the light is green? Not that much sensitive to double
yellow lines

Bit very sensitive to double yellow lines

Right lane is clearly occupied by a car, the classifier can handle such
situation

Hardly, maybe tend to say ’can’t turn right’ while right lane is open be-
cause he sees a car on a third lane (to the right of the lane to the right)

see previous answer

It seems that if the front car is too close, the prediction will always be
can’t turn

If there was a double Yellow line on the right, the model would always
return false

It is a situation never seen before (car stop behind another, next to an-
other), in doubt, you can’t turn right.

Not really, it was mostly ”right”, but I didn’t understand the pattern of
the wrong predictions.

Yes, some predictions were wrong sometimes (e.g., crossing a full line).

due to the car on the lane next to our car yes, I think the model is very well in detecting the two yellow parallel
lines on the street indicating a prohibition of reel swapping

Yes, problem turn right is NOT turn 90 degree angle right but just turn
right to the next lane as in reel swapping. I think this decision should be
differentiated cause I find ”turn right” confusing as it can mean both =
also a problem for the model

no no
Lines on road (solid vs dashed) + new objects on the right (Can’t turn) +
there is no car or a bit far (Can turn)

Not clear, It seems that if there is solid line on the right, a close car or
new objects it can’t turn

yes, many false negative

the road, the cars, the lines on the road (continuous/dashed..) sometimes turning right is permitted by the model while there is a con-
tinuous line on the road

obstructing car on the right free road, available turn further down the road = right turn ok; car present
on the right lane = right turn not ok

the model does not understand the direction of traffic

The image is unlike the others. And in case of doubt, I assume that the
model is conservative

Double lines make it not turn right Does not pay too much attention to other cars

car too close no no
the car is too close from the other car i think : car in front of the car and yellow line

OCTET No car on the left If a car is on the left the model predict can’t turn right It seems that the model is disturbed by the car on the left
looking for cars on the left, or less often in front of our car Model should look also look to the right. Often, a car on the left is not

an issue to turn right
No cars stationed on the left, no continuous white band The model might be disproportionately affected by lane width and

parked cars
The model sometimes focus on irrelevant factors

Car in front and on the right too close to me To decide if the car can turn right, the model is looking if there are closed
cars on the right side, in front AND on the left side

Yes, to decide if the model can turn RIGHT, the model is also looking
whether there is a car near on the LEFT side

Multiple cars, multiple brakes lights, car too close Having a car on the left or multiple brakes is more likely to be ”can’t
turn” prediction

Sometimes it says you can turn right although there does not seem to be
a road on the right

Cars are too close and this seems to be a no no for the decision model If there are cars too close it seems not to allow to turn right
The car in front of me in close and the lights are on which seems to be
understood by the model as ”can’t turn right”

When there is a car in the bottom left part of the image, it’s tagged ”can’t
turn right”

The results are very counter-intuitive because one would expect that
’can’t turn right” should be the answer if there is a car or an obstacle
on the right (not on the left)

because the right lane is occupied The presence of a double yellow line on the right prohibits turning right I did not understand many examples where there was no double line and
where the right lane seemed clear and where, however, turning right was
prohibited.

Can’t turn right when front vehicle is close and when there is a car on
the left or on the right

Influcene the decision : Yellow line, distance with the front car, position
of vehicles on the right or on the left.

The model does not consider the lateral space on the right side.

The car in front is too close, and there is a car on the right To be able to overtake, we must not have cars overtaking us, nor cars that
are too close, if possible good general visibility, in particular lines.

No

There is a car too the right which is close. It does not want to turn when there is a car to the left Yes, as said before
There is no car on the left, no double yellow can be seen if the model detects an object car-shaped on the left, a double yellow

line on the ground, or a long and large object to the ground on the right
it doesn’t turn right

it’s decisions do not seem correct regarding driving ability

Car ahead too close - double yellow lines: no turn - cars on the left: no turn - car ahead too
close: no turn - need a car ahead to evaluate if there is the space to turn
right

cars on the left line: no tun - need a car ahead to evaluate if the road is
large enought to turn

car visible on the right Yes when cars are closed either left or right the model predicts ”can’t
turn right”

Yes, the understanding of the geographic position of other cars

car on the right, too close to my car car on left/right close to my car. continuous white line on the right.
Yellow line often on the right and sometimes on the left

can’t turn on right when cars or lines on the left

In some images the model did not detect the car at the right hand part.
SO here it seems ”too far” to be detected by the model.

Seems to respect more the lines than the vehicles or pedestrians Should prevent fro turn right when there is a car a the right...

Car on the right too close to the driver’s car Look for the presence of white line + presence of a car within a radius Sometimes a car is too close on the right side and the model still consider
it can turn right. Sometimes the prediction is just incorrect (yellow line
and still predicts it can turn right)

There is a car next on the right that is too close to the initial car wanting
to make a turn, so the model should detect that it is close enough and it’s
not safe to do a right turn .

Something i noticed is that when the line is continuous or not, Yes the fact that is doesn’t distinguish the nature of the line drawn in the
ground

1) there’s a very close to the right. 2) the car just in front is very close. failure to distinguish between right and left. When there’s a closer car to
the left, the decision is ”can’t turn right” even though the car can indeed
turn right. (Naive question : are you using random flipping as data aug-
mentation technique without changing the label during your training?)

failure to distinguish between right and left. When there’s a closer car to
the left, the decision is ”can’t turn right” even though the car can indeed
turn right. (Naive question : are you using random flipping as data aug-
mentation technique without changing the label during your training?)

Table 4. Responses to the free-form questions in the user-study. The participant had the option to leave the fields blank; they are still
shown in the table. We highlight in bold every occurrence of the word ‘left’.

	. Technical Details
	. Decision models.
	. BlobGan backbone.
	. Training the encoder
	. Time complexity

	. Further ablations
	. Image inversion
	. Encoder training

	. Reconstruction quality
	. Discussion on sparsity of changes

	. Finding the blob index to target
	. Details on the User Study
	. Protocol details
	. Collected responses

	. Preliminary experiments on LSUN dataset

