A. Implement Details
A.1. Triplet Proxy Collection

Generally, the triplet proxy collection concludes given
text proxies X', extracting image proposals as 2D proxies
X! and constructing 3D proxies X? with geometry relations
between images and point clouds. According to the applica-
tion scenarios, we detail the construction process in indoor
and outdoor scenes separately.

Indoor scenes. The indoor scenes S usually adopt RGB-
D sensors to collect images with corresponding depth maps
as 1%, where s € |S|. Specifically, we first provide given
text proxy X' as the input of pretrained DetCLIP [10] to
extract 2D image proposals 154 i € |XI|, where | X|
denotes the amount of 2D proxies in scene s. Then we seg-
ment the foreground images with unsupervised GrabCut [8]

algorithm as I%v¢ | thus the point cloud instances can be
reconstructed by the RGB-D pixels with camera calibration
Gin, which can be formulated as:

[Lyaﬂ :Gﬁ\ll X (u,v,d],

where Gy = I x R, denotes the combination of the intrin-
sics matrix I and the extrinsics matrix R, of RGB-D camera.

Outdoor scenes.  Considering a much wider perception
range, outdoor scenes usually have LiDAR and camera sen-
sors to capture point clouds PYY# and camera images I}**.
Thus point clouds can be projected into camera pixels with
sensor transformation matrix Goyr as:

[ua v, d—| = Gour X [ZL’, Y, Z}a

where Goyr = I X RC_1 X R; are the combination of cam-
era intrinsics matrix I, camera extrinsics matrix R, and the
LiDAR extrinsics matrix R;. Concretely, we first conduct
a similar procedure to indoor scenes that produces 2D im-
age proposals as 14 ; € | X ]| for 2D proxies X . Then
we extract the 3D frustum P»*¥# by extruding the 2D im-
age proposal into 3D space and conduct DBSCAN clus-
tering within the frustum. Eventually, we obtain the 3D
proxy instance by filtering the point cloud cluster PH*¥=,
The whole process of triplet proxy collection is illustrated
in Figure Al.

A.2. Contrastive Pretraining

Our main paper applies the popular point cloud classi-
fier PointNet++ [7] as our point cloud encoder. Concretely,
we use two set abstraction layers that aggregate multi-scale
information and then encode the feature vectors for point
cloud instances by three fully convolutional layers. We re-
move the convolutional head of PointNet++ since the point
cloud features of CLIP? can be directly referenced to the
language embedding for downstream tasks.

We conduct all experiments using Pytorch [4], 8 Tesla
V100 cards on a single server. We randomly sample 2048
points on each object both for training and testing. At train-
ing time, AdamW optimizer [3] is performed on 8 GPUs
with 200 batch sizes on each. The learning rate is set to
0.006, 3e-2 as weight decay, and 0.9 as momentum. And
we adopt the cosine decay with 1000 iteration warm-up. For
both indoor and outdoor datasets, we train 100 epochs.

A.3. ScanNet Dataset

Considering the ambiguous synonyms in the raw classes,
like “handrail”, “stair rail” and “banister”’, we involve a
data preprocessing step aimed at merging raw classes us-
ing WordNet' synonyms. Specifically, the official file
scannetv2-labels.combined.tsv provided by ScanNet is uti-
lized to identify synonyms for the various classes. This
process resulted in the merging of 290 classes, which in-
cluded 86 classes that lacked synonyms. To further refine
the merged classes, the 86 classes were subjected to an ad-
ditional merging step. This step involved merging them into
existing synonyms based on the path similarity in WordNet.
The decision to merge was guided by a predefined thresh-
old, such that only classes with a path similarity score above
the threshold were merged.

The outcome of the above-described process was a fi-
nal set of 249 classes deemed suitable for open-vocabulary
evaluation. These classes represented a more refined and
comprehensive set of merged classes, facilitating more rea-
sonable and consistent evaluations.

B. Additional Results
B.1. Different Point Cloud Encoder

We compare three alternatives of point cloud encoder, in-
cluding PointNet [6], DGCNN [5] and PointNet++ [7], and
report the class average Top1 accuracy of zero-shot recogni-
tion in Table A 1. Specifically, PointNet encodes point cloud
features with point-wise MLP and max-pooling, DGCNN
applies EdgeConv to extract edge features and then ensem-
ble the point cloud features, while PointNet++ adopts ad-
ditional hierarchical feature learning based on PointNet to
leverage neighborhoods at multiple scales. As illustrated in
Table A1, PointNet++ outperforms the other two encoders
on all benchmarks, showing its superiority in extracting ef-
fective point cloud features. We believe more advanced
point cloud encoder architectures can further enhance our
learned 3D representation of CLIP2.

B.2. Impact Analysis of Proxy

Proxy range. As the prior knowledge of open-world
vocabularies, we adopt the caption list in 2D open-world
dataset LVIS [2] to set text proxies without human anno-
tations. In Table A2, we transfer the text proxies to the
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Figure A1. Illustration of triplet proxy generation process.

Encoder ScanNet SUN RGB-D  ScanObjectNN

PointNet 22.6 453 27.0

DGCNN 26.0 52.7 34.0
PointNet++ 38.5 61.3 394

Table Al. Comparison of point cloud encoders.

groundtruth list of segmentation annotations of the SUN
RGB-D [9], which presents the congruous vocabulary range
of dataset annotations with less noise but a narrow vision
of open-vocabulary. Results in Table A2 demonstrate that
the groundtruth proxy range can improve the intra-dataset
recognition performance on SUN RGB-D by 2.3% average
Topl Acc. However, the inter-dataset performance drops
1.9% on ScanNet and 5.0% on ScanObjectNN, and yields a
4.9% drop of average Top5 Acc on the extended vocabular-
ies of ScanNet. The overall results validate that the open-
world vocabulary of text proxies benefits transferable 3D
representation learning.

Proxy quantity. In Figure A2, we present the perfor-
mance curves that demonstrate the consistency between
the zero-shot recognition performance and increasing proxy
data. Our analysis suggests that increasing the amount of
training data in future work has the potential to further

Range ScanNet SUN RGB-D  ScanObjectNN
Main Topl 384 cls. TopS  Main Topl Topl
SUN=37 36.6 17.1 63.6 34.4
LVIS=1203 38.5 22.0 61.3 39.4
SCAN=384 39.5 23.0 61.6 44.6

Table A2. Comparison with different proxy range.

improve the upper bound of performance. These findings
highlight the importance of scaling proxy data in a cost-
effective manner.

B.3. Comparison with Supervised Baselines

We conduct supervised training with popular 3D encoder
PointNet [6] and PointNet++ [7] using annotations from
SUN RGB-D training set. We consider two different set-
tings as supervised baselines: 1) Traditional logit classifica-
tion head L_Head, which is fixed to the predefined training
classes and fails to identify novel classes. 2) Text classifica-
tion head indicated as T_Head. Specifically, we replace the
logit classification head with CLIP text embeddings. And
the maximum cosine similarities between the 3D feature
and text embeddings are the final results. According to the
text classification head, we can compare the generalization
of flexible categories with supervised training.

The results in Table A3 show that CLIP? is comparable



Method | Backbone | SUN ScanNet
supervised L_Head 48.5 -
supervised T_Head | PointNet [6] | 44.2 14.4

CLIP? \ | 453 226
supervised L_Head 63.4 -
supervised T_Head | PointNet++ | 60.3 25.5

PointCLIP [11] [7] 11.5 6.7

CLIP? 61.3 38.5

Table A3. Comparisons with supervised baselines. We train su-
pervised baselines on SUN RGB-D (SUN) dataset and evaluate
recognition results on SUN and zero-shot performance on Scan-
Net. L_Head and T_Head indicate logit classification head and
text classification head respectively.

to supervised baselines on SUN RGB-D and outperforms
them on ScanNet, illustrating the effectiveness of our un-
supervised approach and its superiority in open-vocabulary
understanding.

C. More Qualitative Results

Sailency map between text prompt and point cloud.

To validate our CLIP?, we show a saliency map between
the given text prompt and the point cloud within one scene
in Figure A3. Specifically, we calculate the feature dis-
tances between the class texts and the point cloud scene and
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Figure A2. Performance curves for training proxy quantity.

plot the saliency map, with lighter highlights representing
smaller feature distances. The text feature has greater sim-
ilarity to the point feature of the corresponding class, indi-
cating the feature alignment between text and point cloud.

Visualization of zero-shot localization. = We show more
qualitative results in Figure A4 for indoor scenes SUN
RGB-D [9] and Figure A5 for outdoor scenes nuScenes [!].
The visualization results illustrate the zero-shot localization
and recognition abilities of CLIP2. Specifically, the pro-
posed CLIP2 enables the open-world vocabularies beyond
groundtruth annotations without extra human supervision,
such as ’Tire’ and ’Debris’ in Figure A4.
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Figure A3. Saliency maps between texts and point cloud scenes.
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Figure A4. More Visualizations of the zero-shot localization and recognition on the nuScenes dataset. The proposed CLIP? enables the
open-world vocabularies beyond groundtruth annotations without extra human supervision, such as ’Tire’ and ’Debris’. Best viewed in
colors.
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Figure A5. More Visualizations of the zero-shot localization and recognition on SunRGB-D dataset. The proposed CLIP? shows open-
world recognition ability in realistic scenarios. Best viewed in colors.
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