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A. Downstream Datasets

A.1. Action Recognition

The statistics of our downstream action recognition
datasets are listed as follows: (a) Something-Something
V2 (SSV2) [8] is a large-scale dataset that shows humans
performing pre-defined basic actions with everyday ob-
jects. It consists of 169K training videos and 20K valida-
tion videos belonging to 174 fine-grained action classes.
(b) Kinetics-400 [10] contains 240K training videos and
20K validation videos belonging to 400 classes. (c) UCF-
101 [17] contains 9.5K/3.5K training and validation videos
with 101 action classes. (d) HMDB-51 [11] contains
3.5K/1.5K training and validation videos with 51 action
classes.

A.2. Text-to-Video Retrieval

The statistics of our downstream text-to-video retrieval
datasets are listed as follows: (a) MSR-VTT [19] con-
tains 10K YouTube videos with 200K descriptions. Fol-
lowing [3], we train on the training and validation set con-
sisting of 9K videos and evaluate on the 1K-A test set. (b)
MSVD [4] contains 1,970 YouTube videos with 80K de-
scriptions, where each video has around 40 sentences. We
adopt the official split [3], in which 1200, 100, and 670
videos are used for training, validation, and testing respec-
tively. (c) DiDeMo [2] contains 10K Flickr videos with
40K sentences. We follow [3, 6, 7] to evaluate paragraph-
to-video retrieval, i.e., we concatenate all sentences for a
video to form a single query. Specifically, we directly use
the whole video without cropping the localized moments
(as done by [3, 6, 7]). (d) LSMDC [16] consists of 118,081
video clips harvested from 202 movies. We adopt the split
of [3], where the validation and test set has 7,408 and 1,000
videos respectively.

config pre-train post-pretrain

optimizer AdamW
learning rate 1× 10−4

batch size 1024 800
training epochs 20 12
training frames 16 1 + 4
masking ratio 75% 0
input size 224 × 224
patch size, P 16
data augmentation RandomCrop
hidden state dimension, Dh 768
common space dimension, D 256
temperature parameter, τ 0.05

Table 1. The pre-train and post-pretrain setup.

config linear probe fine-tuning

optimizer SGD AdamW
learning rate 0.1 0.001
batch size 384 384
training epochs 100 50 (SSV2), 100 (Others)
training frames 16
clips × crops 5 × 3 (K400), 2 × 3 (Others)
data augmentation CenterCrop

Table 2. The linear probe and fine-tuning setup.

B. Implementation Details

As some of the YT-Temporal dataset’s video sources,
e.g., YouTube, are overlapped with those of downstream
datasets, we have carefully checked that there is no data
leakage between pre-training and downstream datasets by
extracting respective frame features with CLIP, calculating
their similarity between frame features, and manually ex-



MSR-VTT DiDeMo

Method R@1 R@5 R@10 MedR Method R@1 R@5 R@10 MedR

NoiseEst [1] 17.4 41.6 53.6 8.0 HERO [13] 2.1 - 11.4 -
MMT [5] 26.6 57.1 69.6 4.0 CE [14] 16.1 41.1 82.7 8.3

SupportSet [15] 30.1 58.5 69.3 3.0 ClipBert [12] 20.4 48.0 60.8 6.0
Frozen [3] 31.0 59.5 70.5 3.0 Frozen [3] 31.0 59.8 72.4 3.0

Ours 34.6 61.5 72.2 3.0 Ours 32.4 59.8 71.7 3.0

LSMDC MSVD

Method R@1 R@5 R@10 MedR Method R@1 R@5 R@10 MedR

NoiseEst [1] 6.4 19.8 28.4 39.0 NoiseEst [1] 20.3 49.0 63.3 6.0
MMT [5] 12.9 29.9 40.1 19.3 SupportSet [15] 28.4 60.0 72.9 4.0
Frozen [3] 15.0 30.8 39.8 20.0 Frozen [3] 45.6 79.8 88.2 2.0

Ours 17.2 32.8 41.7 17.0 Ours 45.9 76.7 85.4 2.0

Table 3. The full results for text-to-video retrieval on MSR-VTT, DiDeMo, LSMDC, and MSVD.

ρ 0.2 0.25 0.3

Method subj obj verb subj obj verb subj obj verb

Frozen 0.56 0.61 0.54 0.58 0.66 0.56 0.62 0.72 0.58
Ours 0.59 0.65 0.59 0.64 0.70 0.62 0.68 0.76 0.63

Table 4. Experiments on SVO Probes, a recently proposed bench-
mark for the subject, verb, and object understanding in static im-
ages. Our pre-trained model can better reason about the dynamic
context behind the given images. We do not compare with SOTA
spatiotemporal representation learning methods, e.g., VideoMAE,
since they cannot perform text-to-video retrieval.

Name Formulation Lbase Lsort SSV2 Gain

M1 MERLOT ✓ ✕ 66.2 +0.9M2 ✓ ✓ 67.1

M3 Ours ✓ ✕ 67.0 +1.5M4 ✓ ✓ 68.5

Table 5. The top-1 accuracy w.r.t. different contrastive formulation
on SSV2 under the fine-tuning protocol.

Sort Source Transcripts, K Sort Module Accuracy

T
4

RG 0.4%
T SortTSF 0.5%

T + V SortTSF 21.5%

Table 6. The sort accuracy w.r.t. different sort modules. T (V)
denotes the transcript (video) representation; RG refers to random
guessing, and SortTSF refers to the sort transformer.

amining those with similarity above the threshold.
Our training hyper-parameters are listed in Table 1 and

Table 2. We mostly follow the setting of [18] for conve-
nience. Carefully tuning these parameters may yield better
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Figure 1. (a) The top-1 accuracy w.r.t. different masking ratio. (b)
The top-1 accuracy w.r.t. different temperature parameter τ .

performance.

C. Additional Experiments
C.1. Full Results for Text-to-Video Retrieval

We compare our method with seven state-of-the-art
methods [1, 3, 5, 12–15]. The full Recall@K and MedR
results are reported in Table 3. Our model achieves state-
of-the-art or competitive performance on all datasets. It
shows that our TVTS is capable of learning the association
between video patterns and language semantics.

C.2. SVO-Probes Test

Our model can also be well transferred to understand
static images and reason about the dynamic context behind
them. To evaluate such an ability, we conduct experiments
on the recently proposed SVO Probes [9], a zero-shot test
benchmark for subject, verb, and object understanding in
the image field. In SVO Probes, each sentence is tied with a
positive and a negative image, in which the positive image
has consistent semantics, i.e. subject, verb, and object, with
the sentence, while the negative image substitutes one of
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Figure 2. Visualization of the top-5 prediction scores on SSV2, we normalize the scores to make their summation 100%. The blue and
orange rows denote the scores of the right and wrong classes, respectively.

the three concepts but keeps the remaining two unchanged.
The objective is to test whether a model can correctly iden-
tify the positive image given a query sentence. We treat
it as a text-image retrieval task, i.e. given the text and im-
age embedding, if their cosine similarity surpasses a certain
threshold ρ, we consider the image positive. We report the
precision results in terms of different values of ρ, shown in
Table 4. Our model reaches higher precision on all con-
cepts, which implies our learned spatiotemporal representa-
tions have strong out-of-the-box capabilities.

C.3. Ablation Study (Cont.)

Contrastive Formulation. Since MERLOT [20] formu-
lates the contrastive objective by frame-transcript matching,
we further investigate how much this change in the pro-
posed approach from MERLOT contributes to the improved
performance. Specifically, we replace the contrastive for-
mulation of Lbase with that of MERLOT, and the results
are reported in Table 5. The accuracy slightly degrades due
to mismatches between single frames and noisy transcripts,
but the sorting task still boosts video representations, given
the gains when plugging Lsort.

Sort Accuracy. To prevent the model from learning short-
cuts, i.e., memorizing orders from text alone, we stop the
gradients of sorting loss from flowing toward encoding tran-
script features. To verify it, we test the accuracy of tran-
script sorting using our pre-trained model in Table 6, where
the expectation of random guessing accuracy is 0.4% (1/44).
Sorting the text alone almost fails, while sorting text via re-
sorting to video features achieves 21.5% accuracy. It im-
plies the sorting task is solved by promoting video under-
standing instead of learning shortcuts.

Masking Ratio. We compare different masking ratios for
TVTS in Figure 1(a). Both lower (60%) and higher (90%)
masking ratio drop performance than our method with 75%
ratio, because a lower masking ratio brings in temporal re-
dundancy, while a higher ratio leads to the extremely limited
knowledge to perform TVTS.

Temperature Parameter. We also investigate the influence
of the temperature parameter τ in Lbase in Figure 1(b). A
smaller τ makes the model focus more on the hard negative
samples, but it also increases the difficulty of convergence.
We set τ = 0.05 for its best performance.



Visualization. To demonstrate the superiority of our
learned spatiotemporal representation intuitively, we ran-
domly pick two videos in SSV2 and illustrate the top-5 pre-
diction scores w.r.t. our method, VideoMAE and Frozen in
Figure 2. Our method predicts the highest score for the right
class. In the first column, we need to distinguish the ac-
tion “picking” from other similar actions such as “moving”,
which requires fine-grained temporal reasoning ability. In
the second column, the model must extract both the spatial
and temporal information to classify the video as the cate-
gory containing “into” and “until it overflows”. Only our
method classifies the video correctly, while VideoMAE and
Frozen make mistakes due to a lack of spatiotemporal mod-
eling ability.
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