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1. More Description of FAT and VAT
Algorithm 1 and Algorithm 2 present the pseudo-code of

FAT and VAT in the Pytorch-like style, respectively. Here
we can draw four observations: (1) VAT generates adver-
sarial noise based on self-prediction, which may backfire
when the original prediction is unsatisfied; (2) VAT simu-
lates image-level adversarial noise, which may be learned
by deep neural networks and thus show limited effects;
(3) alternatively, in our work, we approximate the adver-
sarial noise using two different views for the unselected
low-confidence data. Therefore, we can mitigate the issue
of undesirable adversarial noise caused by confirmation-
biased self-prediction; (4) FAT injects feature-level adver-
sarial noise, making the model adapt to a more difficult task,
thereby boosts performance by better robustness.

2. Class-level AUC on Chest X-Ray14
Table 1 shows the performance comparision of class-

level AUC on Chest X-Ray14 with label percentage of 20%.
PEFAT achieves the best or second best class-level perfor-
mance in 11 out of 14 categories. Specifically, compared
to pseudo-labeling methods UPS and ACPL, our method
has 0.81%∼2.66% performance gain in averaged AUC even
if the input image size is smaller. Beyond that, PETAF
outperforms consistency-based method SRC-MT and self-
supervised learning-based method S2MTS2 by 3.35% and
1.52%, repsectively.

3. Results on CIFAR-10 and CIFAR-100
We also conduct experiments on CIFAR-10 [2] and

CIFAR-100 [2], following the same setup as [13]. Table 2
presents the results. We can find that PEFAT shows better
performance on CIFAR-100 and is on par with other state-
of-the-art methods on CIFAR-10. For most methods, there
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Figure 1. Four evaluation metrics under different η, which are
conducted on NCT-CRC-HE dataset.

is little improvement on CIFAR-10 even if increasing the
number of labeled data, and the main reason is that models
generally make correct predictions on unlabeled data, mak-
ing the results close to the fully supervised baseline. As for
CIFAR-100, a relatively complicated dataset, PEFAT con-
sistently achieves the best results under different settings,
demonstrating its superiority of unlabeled data mining.

4. Discussion of Hyper-parameter η

In the proposed PEFAT, η is a hyper-parameter to bal-
ance the weight between two cross pseudo-losses (see Eq.
(10)). As shown in Figure 1, we conduct a grid search of
η ∈ {0.1, 0.3, 0.5, 0.7, 0.9} on NCT-CRC-HE dataset. We
can find that PEFAT achieves the best performance when
η = 0.5. This result indicates that it is the most effective
to select trustworthy pseudo-labeled data when treating two
cross pseudo-losses equally.

1



5. Limitation
The proposed FAT utilizes loss backpropagation to ap-

proximate the feature-level adversarial noise, which may
require higher demand for computing and storage on dense
prediction tasks, i.e., medical image segmentation. But for
classification, the aforementioned cost can be almost ig-
nored, since the classification head is lightweight.
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Table 1. Performance of class-level AUC on Chest X-Ray14 dataset under the label percentage of 20%. Note that * denotes the methods
employee DenseNet-169 as backbone with 384×384 input size, † means the methods use DenseNet-121 as backbone with 512×512 input
size. Our method takes DenseNet-121 as backbone with input size of 224×224.

Methods Baseline [1] MT [9] SRC-MT* [6] UPS [7] S2MTS2† [5] APCL† [4] Ours
Atelectasis 75.75 75.12 75.38 77.09 78.57 79.53 79.77

Cardiomegaly 80.71 87.37 87.70 85.73 88.08 89.03 88.52
Effusion 79.87 80.81 81.58 81.35 82.87 83.56 86.30

Infiltration 69.16 70.67 70.40 70.82 70.68 71.40 70.98
Mass 78.40 77.72 78.03 81.82 82.57 82.49 81.56

Nodule 74.49 73.27 73.64 76.34 76.60 77.73 77.82
Pneumonia 69.55 69.17 69.27 70.96 72.25 73.86 74.18

Pneumothorax 84.70 85.63 86.12 85.86 86.55 86.95 87.80
Consolidation 71.85 72.51 73.11 74.35 75.47 75.50 78.92

Edema 81.61 82.72 82.94 83.56 84.83 84.95 87.43
Emphysema 89.75 88.16 88.98 91.00 91.88 93.36 92.86

Fibrosis 79.30 78.24 79.22 80.87 81.73 81.86 80.94
Pleural Thicken 73.46 74.43 75.63 75.55 76.86 77.60 75.42

Hernia 86.05 87.74 87.27 85.62 85.98 85.89 90.20
Mean 78.19 78.83 79.23 79.92 81.06 81.77 82.58

Table 2. Accuracy comparison (mean and std over 5 runs) with other state-of-the-art SSL methods on CIFAR-10 [2] and CIFAR-100 [2].

Method CIFAR-10 CIFAR-100

250 labels 4000 labels 2500 labels 10000 labels

MT [9] 67.68±2.30 90.81±0.19 46.09±0.57 64.17±0.24
UDA [10] 91.18±1.08 95.12±0.18 66.87±0.22 75.50±0.25

FixMatch [8] 94.93±0.65 95.74±0.05 71.71±0.11 77.40±0.12
Dash [11] 95.44±0.13 95.92±0.06 72.82±0.21 78.03±0.14

CoMatch [3] 95.09±0.33 95.44±0.20 71.63±0.35 79.14±0.36
CCSSL [12] 94.86±0.55 95.54±0.20 75.70±0.63 80.68±0.16

SimMatch [13] 95.16±0.39 96.04±0.01 74.93±0.32 79.42±0.11

Ours 95.52±0.37 95.98±0.03 75.92±0.56 80.88±0.32



Algorithm 1: Pseudo-code of Feature Adversarial Training in a Pytorch-like style

# f: encoder; cls: classifier
# KL: Kullback-Leibler Divergence; norm_l2: L2 Normalization
for x, _ in unselected_unlabeled_loader:

x1, x2 = strong_aug1(x), strong_aug2(x)
z1, z2, logit1, logit2 = f(x1), f(x2), cls(f(x1)), cls(f(x2))
p1, p2 = torch.softmax(logit1, dim=1), torch.softmax(logit2, dim=1)

# initialize two random noises
d1 = torch.normal(0, 1, size = z1.shape)
d2 = torch.normal(0, 1, size = z2.shape)
d1, d2 = norm_l2(d1), norm_l2(d2)

# apply random noises
z_d1 = torch.tensor(z1.clone().detach().cpu().data + d1, requires_grad=True)
z_d2 = torch.tensor(z2.clone().detach().cpu().data + d2, requires_grad=True)
logit_d1, logit_d2 = cls(z_d1), cls(z_d1)
p_d1, p_d2 = torch.softmax(logit_d1, dim=1), torch.softmax(logit_d2, dim=1)

# generate feature-level adversarial noises
loss_kl = KL(p_d1, p2) + KL(p_d2, p1)
loss_kl.backward(retain_graph=True)
adv1, adv2 = norm_l2(z_d1.grad), norm_l2(z_d2.grad)

# calculate FAT loss
logit_adv1, log_adv2 = cls(z1 + adv1), cls(z2 + adv2)
p_adv1, p_adv2 = torch.softmax(logit_adv1, dim=1), torch.softmax(log_adv2, dim=1)
loss_FAT = KL(p_adv2, p1) + KL(p_adv1, p2)

Algorithm 2: Pseudo-code of Vitural Adversarial Training in a Pytorch-like style

# M: encoder + classifier;
for x, _ in unlabeled_loader:

x = strong_aug(x)
logit = M(x)
p = torch.softmax(logit, dim=1)

# initialize random noise
d = torch.normal(0, 1, size = x.shape)
d = norm_l2(d)

# apply random noise
x_d = torch.tensor(x + d, requires_grad=True)
logit_d = M(x_d)
p_d = torch.softmax(logit_d, dim=1)

# generate image-level adversarial noise
loss_kl = KL(p_d, p)
loss_kl.backward(retain_graph=True)
adv = norm_l2(x_d.grad)

# calculate VAT loss
logit_adv = M(x + adv)
p_adv = torch.softmax(logit_adv, dim=1)
loss_VAT = KL(p_adv, p)
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