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A. Comparison of FOG and SOG
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C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0 0.91 0.93 0.92 0.95 0 0 0 0.9 0.91

C2 0.91 0 0 0 0 0.95 0.94 0 0 0

C3 0.93 0 0 0.93 0.96 0 0 0 0 0

C4 0.92 0 0.93 0 0.95 0 0 0 0 0

C5 0.95 0 0.96 0.95 0 0.92 0 0 0 0

C6 0 0.95 0 0 0.92 0 0.95 0 0 0

C7 0 0.94 0 0 0 0.95 0 0.91 0 0

C8 0 0 0 0 0 0 0.91 0 0.94 0

C9 0.9 0 0 0 0 0 0 0.94 0 0.96

C10 0.91 0 0 0 0 0 0 0 0.96 0

C1 C2 C3 C4 C5 C6 C7 C8 C9 C10

C1 0 0 1.64 1.63 1.68 0 0 0 0.79 0.79

C2 0 0 0 0 0 0.85 0.85 0 0 0

C3 1.64 0 0 1.64 1.7 0 0 0 0 0

C4 1.63 0 1.64 0 1.68 0 0 0 0 0

C5 1.68 0 1.7 1.68 0 0 0 0 0 0

C6 0 0.85 0 0 0 0 0.85 0 0 0

C7 0 0.85 0 0 0 0.85 0 0 0 0

C8 0 0 0 0 0 0 0 0 0 0

C9 0.79 0 0 0 0 0 0 0 0 0.79

C10 0.79 0 0 0 0 0 0 0 0.79 0
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Figure 1. An example that illustrates the relationship between
FOG and SOG. (a) FOG and its weight matrix. (b) SOG and
its weight matrix.

As shown in Fig. 1: 1) SOG considers the commonly
compatible matches in the global set of the matched pairs
rather than only the geometric consistency, making it more
consistent and more robust in the case of high outlier rates;
2) SOG is sparser than FOG, and therefore beneficial in
making the search of cliques more rapid.

The weights of the edge eij = (ci, cj) in the FOG are
transformed as follows to obtain the corresponding second-
order weights:

wSOG(eij) = wFOG(eij)·
∑

eik∈E
ejk∈E

[
wFOG(eik) · wFOG(ejk)

]
.

(1)
If no remaining nodes form edges with both ci and cj ,
wSOG(eij) will be 0, which demonstrates that eij will be
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removed from SOG then. In Fig. 1(b), the four edges e12,
e56, e78 and e89 are removed, and the whole graph is di-
vided into subgraphs that contain several cliques naturally.

B. Additional Experiments

The information of all tested datasets is presented in Ta-
ble 1.
Results on ETH. Additionally, we also test our method on
the outdoor dataset ETH [6], which contains more com-
plex geometries compared with 3DMatch [8]. FPFH [7],
FCGF [2], and Spinnet [1] are employed to generate cor-
respondences, from which registration will then be per-
formed by RANSAC-50K and MAC. The number of sam-
pled points or correspondences is set to 5000. Registration
is considered successful when the RE ≤ 15°and TE ≤ 30
cm. The quality of generated correspondence and registra-
tion results are reported in Table 2 and Table 3, respectively.

The results suggest that when a defect in a descriptor
leads to a very low inlier rate for generating the corre-
spondence set, MAC is still effective in finding the ac-
curate consistent subset from it, thus greatly boosting the
registration recall. The registration recall obtained by us-
ing MAC is 24.2% higher than RANSAC when combined
with FPFH, and 18.51% higher when combined with FCGF.
MAC working with Spinnet achieves a registration recall of
94.67% on ETH.
Time and memory analysis. Efficiency and memory con-
sumption results of several well-performed methods are
shown in Tables 4 and 5, respectively. Regarding efficiency
experiments, all methods have been tested for ten rounds,
and the mean and standard deviation results are reported.
All methods were executed in the CPU. The results indicate
that MAC is quite lightweight and efficient when the input
correspondence number is less than 2.5k.

C. Visualizations
We show more registration results in Figs. 2-

5.



Dataset Data type Nuisances Application scenario # Matching pairs
U3M [5] Object Limited overlap, self-occlusion Registration 496

3DMatch [8] Indoor scene Occlusion, real noise Registration 1623
3DLoMatch [4] Indoor scene Limited overlap, occlusion, real noise Registration 1781

KITTI [3] Outdoor scene Clutter, occlusion, real noise Detection, registration, segmentation 555
ETH [6] Outdoor scene Limited overlap, clutter, occlusion, real noise Feature description, registration 713

Table 1. Information of all tested datasets.

Gazebo Wood Avg.Autumn Summer Autumn Summer
FPFH [7] 0.42 0.24 0.21 0.26 0.29
FCGF [2] 2.34 1.25 1.35 1.68 1.62

Spinnet [1] 16.67 13.73 12.20 14.67 14.40

Table 2. Inlier ratio (%) of generated correspondence on ETH
dataset.

Gazebo Wood Avg.Autumn Summer Autumn Summer
FPFH [7] 16.85 10.03 10.43 10.40 11.92
FCGF [2] 54.35 28.03 52.17 51.20 42.78

Spinnet [1] 98.37 83.05 100.00 99.20 92.57

FPFH+MAC 46.74 27.68 33.04 43.20 36.12
29.89↑ 17.65↑ 22.61↑ 32.80↑ 24.20↑

FCGF+MAC 75.54 42.91 71.30 73.60 61.29
21.19↑ 14.88↑ 19.13↑ 22.40↑ 18.51↑

Spinnet+MAC 98.91 87.54 100.00 100.00 94.67
0.54↑ 4.49↑ - 0.80↑ 2.10↑

Table 3. Registration recall (%) boosting for various descriptors
combined with MAC on ETH dataset.

# Corr. 250 500 1000 2500 5000
PointDSC 32.24±0.81 78.38±0.89 240.46±2.18 1401.97±12.24 5504.11±10.32
TEASER++ 6.40±1.88 6.68±0.66 16.74±1.21 104.24±0.53 484.93±1.87
SC2-PCR 19.34±0.63 63.23±0.55 215.98±1.24 1282.73±4.05 5210.17±8.30
MAC 7.32±0.55 23.32±0.38 56.45±1.41 282.67±7.83 3259.38±12.66

Table 4. Comparisons on average time consumption (ms).

# Corr. 250 500 1000 2500 5000
PointDSC 3531.46 3538.26 3582.57 3634.22 3736.10
TEASER++ 1631.92 1634.77 2029.22 2266.84 2484.83
SC2-PCR 448.01 453.18 508.40 621.27 690.22
MAC 15.59 17.43 23.49 52.79 150.86

Table 5. Comparisons on average memory consumption (MB).
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Figure 2. Registration process-visualizations of MAC on 3DMatch.
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Figure 3. Qualitative comparison on 3DLoMatch. Red and green represent failed and successful registration, respectively.
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Figure 4. Qualitative comparison on KITTI.
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Figure 5. Qualitative comparison on ETH.
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